New Jersey Semi-Conductor Products, Inc.

20 STERN AVE. SPRINGFIELD, NEW JERSEY 07081 U.S.A.

Features

FAST SWITCHING LOW CAPACITANCE HIGH CURRENT CAPABILITY

Description/Applications

The 5082-1000 series of diodes feature planar silicon epitaxial construction to provide high conductance, low capacitance, and nanosecond turn-on and turn-off. Process control of the diode manufacturing enables specification of effective minority carrier lifetime. Turn-on time and voltage overshoot are minimized in these diodes of low conductivity modulation.

These diodes are ideally suited for applications such as core drivers, pulse generators, input gates or wherever high conductance without loss of speed is required.

Maximum Ratings at T_{CASE}=25°C

WIV — Working Inverse Voltage						
1006 40 Volts						
1001/1002 30 Volts						
1003/1004 20 Volts						
IF (Surge) Forward Current Surge,						
1.0 Second Duration 0.75 Amp						
IF (Surge) — Forward Current Surge,						
1.0 Microsecond Duration 7.50 Amp						
PDISS - Power Dissipation ^[1] 500 mW						
T _A — Operating Temperature Range -65°C to +175°C						
TSTG - Storage Temperature Range -65°C to +200°C						
Operation of these devices within the above						
temperature ratings will assure a device Mean						
Time Between Failure (MTBF) of approximately						
1 x 107 hours.						

TELEPHONE: (973) 376-2922 (212) 227-6005 FAX: (973) 376-8960

HIGH 5082-1001 (1N 4456) 5082-1002 CONDUCTANCE 5082-1003 5082-1004 DIODES 5082-1006

DIMENSIONS IN MILLIMETERS AND (INCHES)

Electrical Specifications at T_A = 25°C

Part Number 5082-	Minimum Breakdown Voltage VBR (V)	Minimum Forward Current IF (MA)	Minimum Forward Current IF (mA)	Maximum Reverse Leakage Current In (nA)	Maximum Reverse Leakage Current IR (µA)	Maximum Total Cepecitance Co (pF)	Maximum Reverse Recovery Time trr (ns)	Meximum Turn-On Time ton (ris)
1001 (1N4456)	35	150	500	200	200	1.5	1.5	2.5
1002	35	300	800	200	200	3.0	2.0	2.5
1003	25	100	300	200	200	2.0	1.5	2.0
1004	25	200	600	200	200	4.0	2.0	2.0
1006	50	150	500	200	200	1.1	1.5	
Test Conditions	la=10µA	Vr=1.0V [2]	VF=1,4V [2]	[3]	150° C ⁽³⁾	V _R =0V, f=1.0 MHz	(Figure 9)	(Figure 10)

NOTES: 1. Mounted on a printed circuit board in still air.

2. Measured at a repetition rate not to exceed the power typically 4.0 nH for all devices.

1006; V_R =30V for 1001, 1002; V_R =20V for 3. VR=35V for 1003, 1004.

4. Inductance measured at the edge of the glass package seal is

5. Rectification Efficiency is typically 65% for all devices a ha hash a -ī

dissipation

Figure 1. Typical Forward Conduction Characteristics, 5082-1001, 1003, and 1006.

Figure 3. Typical Forward Current Temperature Coefficient.

Figure 4. Typical Reverse Current at Specified V_R vs. Increasing Temperature.

