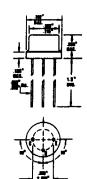
# New Jersey Semi-Conductor Products, Inc.

20 STERN AVE. SPRINGFIELD, NEW JERSEY 07081 U.S.A. TELEPHONE: (973) 376-2922

(212) 227-6005

FAX: (973) 376-8960


# 2N439 - 2N439A

## NPN HIGH FREQUENCY COMPUTER TRANSISTORS

2N439 and 2N439A are NPN alloy-junction germanium transistors. Their basic NPN nature (high mobility electron flow) renders these transistors capable of very fast response under transient pulse operation. Their design is ideal for switching and flip-flop circuits. They are contained in a welded package equipped with flexible plated leads designed for connection by soldering, welding or socketing. This package has the mechanical dimensions of JETEC outline TO-9. The 2N439A has the base connected to the case internally to provide greater dissipation.

#### MECHANICAL DATA

| JETEC outline TO-               | 9  |
|---------------------------------|----|
| JETEC base E3-5                 | 1  |
| Case material Meta              | 11 |
| Maximum case length 0.250 inc   | h  |
| Maximum case diameter 0.360 inc | h  |
| Minimum lead length 1.5 inche   | s  |
| Lead diameter 0.017 inc         | h  |



#### ELECTRICAL DATA

| RATINGS, ABSOLUTE MAXIMUM AT 25°C               | 2N439 | <u>2N439A</u> |
|-------------------------------------------------|-------|---------------|
| Collector to base voltage, V <sub>CB</sub>      | 30    | 30 Vdc        |
| Emitter to base voltage, VEB                    | 25    | 25 Vdc        |
| Collector to emitter voltage, VCE               | 20    | 20 Vdc        |
| Total dissipation, P                            | 100   | 150 mW        |
| Derating per °C increase in ambient temperature | 1.7   | 2.5 mW        |
| Operating and storage temperature, $T_j$        |       | -55 to +85°C  |

NJ Semi-Conductors reserves the right to change test conditions, parameter limits and package dimensions without notice. Information furnished by NJ Semi-Conductors is believed to be both accurate and reliable at the time of going to press. However, NJ Semi-Conductors assumes no responsibility for any errors or omissions discovered in its use. NJ Semi-Conductors encourages customers to verify that datasheets are current before placing orders.

# ELECTRICAL DATA

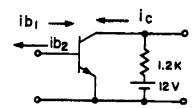
|                                                                                                               | Min.     | Mode     | Max. | <u>Units</u>      |  |  |
|---------------------------------------------------------------------------------------------------------------|----------|----------|------|-------------------|--|--|
| STATIC AND LARGE SIGNAL PARAMETERS                                                                            |          |          |      |                   |  |  |
| Collector cutoff current, I <sub>CBO</sub> $V_{CB} = 25 \text{ V}$ Collector cutoff current, I <sub>CBO</sub> |          | 2        | 10   | μAdc              |  |  |
| $V_{CB} = 6 \text{ V}, \text{ TA} = 75^{\circ}\text{C}$                                                       |          |          | 150  | μAdc              |  |  |
| Emitter cutoff current, IEBO  VEB = 25 V                                                                      |          | 2        | 10   | μAdc              |  |  |
| Emitter cutoff current, IEBO  VEB = 6 V, TA = 75°C  Collector-base breakdown voltage, BVCBO                   |          |          | 150  | μAdc              |  |  |
| $I_C = 100 \mu A$                                                                                             | 30       |          |      | Vdc               |  |  |
| Collector-emitter breakdown voltage, BVCEO $I_C = 300 \mu A$                                                  | 20       |          |      | Vdc               |  |  |
| Current gain, hre<br>IC = 50 mA, VCE = 1.0 V                                                                  | 30       | 45       |      |                   |  |  |
| Input voltage, VEB<br>$I_C = 50 \text{ mA}$ , $V_{CE} = 1.0 \text{ V}$                                        |          | .32      | .7   | Vdc               |  |  |
| Saturation resistance, Rs<br>IC = 50 mA                                                                       |          | 3        | 5    | ohms              |  |  |
| TYPICAL SWITCHING CHARACTERISTICS (Note                                                                       | 3)       |          |      |                   |  |  |
| Rise time, t <sub>r</sub>                                                                                     |          | .5       |      | μs                |  |  |
| Fall time, t <sub>f</sub><br>Storage time, t <sub>s</sub>                                                     |          | .3<br>.7 |      | ha<br>ha          |  |  |
| LOW FREQUENCY, SMALL SIGNAL PARAMETERS (Note 1)                                                               |          |          |      |                   |  |  |
| Current gain, hie                                                                                             |          | 35<br>27 |      | ohms              |  |  |
| Input resistance, h <sub>ie</sub> Input resistance, h <sub>ie</sub>                                           |          | 1500     |      | ohms              |  |  |
| HIGH FREQUENCY, SMALL SIGNAL PARAMETER                                                                        | RS (Note | 2)       |      |                   |  |  |
| Cutoff frequency, $f_{\alpha b}$<br>Collector capacitance, $C_c$                                              | 5.0      | 9        | 20   | mc<br>μμ <b>f</b> |  |  |
| Collector base time constant, rb'Cc                                                                           |          | 2300     |      | μμs               |  |  |
| Extrinsic base resistance, rb'                                                                                |          | 220      |      | ohms              |  |  |

### **ENVIRONMENTAL**

Hermetic seal - detergent and water at 60 psi for 1/2 hour.

Drop - 30 inches to maple block, 3 drops.

Shock - 500 g, 7 ms.


Vibration - 10 g, 100 - 1000 cps.

Lead bend - 3-180 degree bends on leads.

Note 1: VCB = 6.0 Vdc, IE = 1.0 mA, f = 270 cps

Note 2:  $V_{CB} = 6.0 \text{ Vdc}$ ,  $I_{E} = 1.0 \text{ mA}$ , f = 455 kc

Note 3:



turn-on current  $ib_1 = 1 mA$ turn-off current  $ib_2 = 1 mA$ collector current  $i_C = 10 mA$ 

