New Jersey Semi-Conductor Products, Inc.

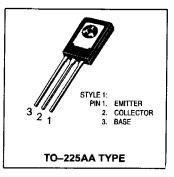
20 STERN AVE. SPRINGFIELD, NEW JERSEY 07081 U.S.A.

TELEPHONE: (973) 376-2922 (212) 227-6005 FAX: (973) 376-8960

Medium-Power Plastic NPN Silicon Transistors

... designed for driver circuits, switching, and amplifier applications. These high-performance plastic devices feature:

- Low Saturation Voltage
 - $V_{CE(sat)} = 0.6 \text{ Vdc} (Max) @ I_C = 1.0 \text{ Amp}$
- Excellent Power Dissipation Due to Thermopad Construction PD = 30 W @ TC = 25°C
- Excellent Safe Operating Area
- Gain Specified to I_C = 1.0 Amp
- Complement to PNP 2N4918, 2N4919, 2N4920


*MAXIMUM RATINGS

Rating	Symbol	2N4921	2N4922	2N4923	Unit
Collector-Emitter Voltage	VCEO	40	60	80	Vdc
Collector-Base Voltage	VCB	40	60	80	Vdc
Emitter-Base Voltage	VEB	5.0			Vdc
Collector Current — Continuous (1)	IC.	1.0 3.0			Adc
Base Current — Continuous	۱ _B	1.0			Adc
Total Power Dissipation @ T _C = 25°C Derate above 25°C	PD	30 0.24			Watts W/°C
Operating & Storage Junction Temperature Range	Т _Ј , T _{stg}	-65 to +150			°C

*ON Semiconductor Preferred Device

1 AMPERE GENERAL-PURPOSE POWER TRANSISTORS 40-80 VOLTS 30 WATTS

THERMAL CHARACTERISTICS (2)

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case	θJC	4.16	°C/W

(1) The 1.0 Amp maximum I_C value is based upon JEDEC current gain requirements. The 3.0 Amp maximum value is based upon actual current handling capability of the device (see Figures 5 and 6).

(2) Recommend use of thermal compound for lowest thermal resistance. *Indicates JEDEC Registered Data.

NJ Semi-Conductors reserves the right to change test conditions, parameters limits and package dimensions without notice information furnished by NJ Semi-Conductors is believed to be both accurate and reliable at the time of going to press. However NJ Semi-Conductors assumes no responsibility for any errors or omissions discovered in its use. NJ Semi-Conductors encourages customers to verify that datasheets are current before placing orders.

Quality Semi-Conductors

ELECTRICAL CHARACTERISTICS (T_C = 25°C unless otherwise noted)

FF CHARACTERISTICS Collector–Emitter Sustaining Voltage (3) (I _C = 0.1 Adc, I _B = 0)	2N4921 2N4922 2N4923	V _{CEO(sus)}	10		
• • •	2N4922	VCEO(sus)	10		1 1/4
			40 60 80		Vdc
Collector Cutoff Current (V _{CE} = 20 Vdc, ¹ _B = 0) (V _{CE} = 30 Vdc, ¹ _B = 0) (V _{CE} = 40 Vdc, ¹ _B = 0)	2N4921 2N4922 2N4923	ICEO		0.5 0.5 0.5	mAdc
Collector Cutoff Current (VCE = Rated VCEO, VEB(off) = 1.5 Vdc) (VCE = Rated VCEO, VEB(off) = 1.5 Vdc, T _C = 125°C		ICEX		0.1 0.5	mAdc
Collector Cutoff Current ($V_{CB} = Rated V_{CB}$, $I_E = 0$)		Ісво	—	0.1	mAdc
Emitter Cutoff Current (V _{EB} = 5.0 Vdc, I _C = 0)		IEBO		1.0	mAdc
N CHARACTERISTICS					
DC Current Gain (3) (I _C = 50 mAdc, V _{CE} = 1.0 Vdc) (I _C = 500 mAdc, V _{CE} = 1.0 Vdc) (I _C = 1.0 Adc, V _{CE} = 1.0 Vdc)		ħFE	40 30 10	 150 	_
Collector–Emitter Saturation Voltage (3) ($I_C = 1.0 \text{ Adc}, I_B = 0.1 \text{ Adc}$)		V _{CE(sat)}		0.6	Vdc
Base–Emitter Saturation Voltage (3) (I _C = 1.0 Adc, I _B = 0.1 Adc)		V _{BE(sat)}		1.3	Vdc
Base–Emitter On Voltage (3) (I _C = 1.0 Adc, V _{CE} ≖ 1.0 Vdc)		V _{BE(on)}		1.3	Vdc
MALL-SIGNAL CHARACTERISTICS					
Current-Gain — Bandwidth Product (I _C = 250 mAdc, V _{CE} = 10 Vdc, f = 1.0 MHz)		ft	3.0		MHz

Small–Signal Current Gain (I_C = 250 mAdc, V_{CE} = 10 Vdc, f = 1.0 kHz) (3) Pulse Test: PW = 300 μ s, Duty Cycle = 2.0%.

Output Capacitance (VCB = 10 Vdc, IE = 0, f = 100 kHz)

*Indicates JEDEC Registered Data.

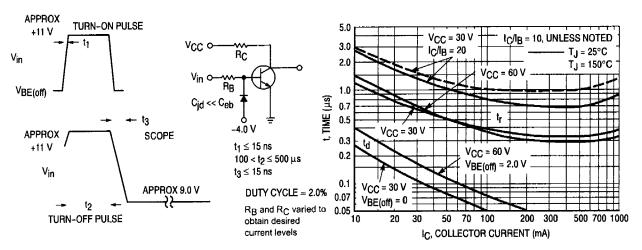


Figure 2. Switching Time Equivalent Circuit

Figure 3. Turn-On Time

Cob

hfe

100

25

pF