New Jersey Semi-Conductor Products, Inc.

20 STERN AVE. SPRINGFIELD, NEW JERSEY 07081 U.S.A.

2N5088, 2N5089

Amplifier Transistors

NPN Silicon

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector – Emitter Voltage 2N5088 2N5089	V _{CEO}	30 25	Vdc
Collector - Base Voltage 2N5088 2N5089	V _{сво}	35 30	Vdc
Emitter - Base Voltage	V _{EBO}	3.0	Vdc
Collector Current - Continuous	I _C	50	mAdc
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	625 5.0	mW mW/°C
Total Device Dissipation @ T _C = 25°C Derate above 25°C	PD	1.5 12	W mW/°C
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-55 to +150	°C

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction-to-Ambient (Note 1)	R _{θJA}	200	°C/W
Thermal Resistance, Junction-to-Case	R _{0JC}	83.3	°C/W

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

1. R_{HJA} is measured with the device soldered into a typical printed circuit board.

x = 8 or 9 A = Assembly Location Y = Year WW = Work Week

NJ Semi-Conductors reserves the right to change test conditions, parameters limits and package dimensions without notice information furnished by NJ Semi-Conductors is believed to be both accurate and reliable at the time of going to press. However NJ Semi-Conductors assumes no responsibility for any errors or omissions discovered in its use. NJ Semi-Conductors encourages customers to verify that datasheets are current before placing orders.

Quality Semi-Conductors

TELEPHONE: (973) 376-2922 (212) 227-6005 FAX: (973) 376-8960

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise noted)

Characteristic		Symbol	Min	Max	Unit
OFF CHARACTERISTICS					
Collector – Emitter Breakdown Voltage (Note 2) ($I_C = 1.0 \text{ mAdc}, I_B = 0$)	2N5088 2N5089	V _(BR) CEO	30 25	-	Vdc
Collector - Base Breakdown Voltage (I _C = 100 μAdc, I _E = 0)	2N5088 2N5089	V _(BR) CBO	35 30	-	Vdc
Collector Cutoff Current $(V_{CB} = 20 \text{ Vdc}, I_E = 0)$ $(V_{CB} = 15 \text{ Vdc}, I_E = 0)$	2N5088 2N5089	Гсво	_	50 50	nAdc
Emitter Cutoff Current $(V_{EB(off)} = 3.0 \text{ Vdc}, I_C = 0)$ $(V_{EB(off)} = 4.5 \text{ Vdc}, I_C = 0)$		IEBO		50 100	nAdc
ON CHARACTERISTICS					
DC Current Gain (I _C = 100 μAdc, V _{CE} = 5.0 Vdc)	2N5088 2N5089	h _{FE}	300 400	900 1200	-
(I _C = 1.0 mAdc, V _{CE} = 5.0 Vdc)	2N5088 2N5089		350 450		
(I _C = 10 mAdc, V _{CE} = 5.0 Vdc) (Note 2)	2N5088 2N5089		300 400	-	

Collector – Emitter Saturation Voltage $(I_C = 10 \text{ mAdc}, I_B = 1.0 \text{ mAdc})$ $\begin{array}{l} \text{Base-Emitter On Voltage} \\ (I_{C} = 10 \text{ mAdc}, \text{ V}_{CE} = 5.0 \text{ Vdc}) \text{ (Note 2)} \end{array}$

SMALL-SIGNAL CHARACTERISTICS

SMALL-SIGNAL CHANACTERIOTIO					
Current-Gain - Bandwidth Product (I _C = 500 μAdc, V _{CE} = 5.0 Vdc, f = 20 MHz)		f⊤	50	-	MHz
Collector-Base Capacitance (V _{CB} = 5.0 Vdc, I _E = 0, f = 1.0 MHz)		C _{cb}	-	4.0	рF
Emitter-Base Capacitance (V _{EB} = 0.5 Vdc, I _C = 0, f = 1.0 MHz)		Ċ _{eb}	-	10	pF
Small-Signal Current Gain (I _C = 1.0 mAdc, V _{CE} = 5.0 Vdc, f = 1.0 kHz)	2N5088 2N5089	h _{fe}	350 450	1400 1800	-
Noise Figure (I _C = 100 μAdc, V _{CE} = 5.0 Vdc, R _S = 1.0 kΩ, f = 1.0 kHz)	2N5088 2N5089	NF		3.0 2.0	dB

2. Pulse Test: Pulse Width \leq 300 µs, Duty Cycle \leq 2.0%.

V_{CE(sat)}

VBE(on)

NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH. 3. CONTOUR OF PACKAGE BEYOND DIMENSION R IS UNCONTROLLED. 4. LEAD DIMENSION IS UNCONTROLLED IN P AND BEYOND DIMENSION K MINIMUM.

Vdc

Vdc

0.5

0.8

-

-

	INC	HES MILLIMETER			INCHES		IETERS
DIM	MIN	MAX	MIN	MAX			
A	0.175	0.205	4,45	5.20			
B	0.170	0.210	4.32	5.33			
С	0.125	0.165	3.18	4,19			
D	0.016	0.021	0.407	0.533			
G	0.045	0.055	1.15	1.39			
H	0.095	0.105	2.42	2.65			
J	0.015	0.020	0.39	0.50			
K	0.500		12.70				
L	0.250		6.35				
N	0.080	0,105	2.04	2.66			
P		0.100		2.54			
R	0.115		2.93				
۷	0.135		3.43				