New Jersey Semi-Conductor Products, Inc.

20 STERN AVE. SPRINGFIELD, NEW JERSEY 07081 U.S.A.

High-Voltage - High Power Transistors

... designed for use in high power audio amplifier applications and high voltage switching regulator circuits.

• High Collector Emitter Sustaining Voltage -

 $V_{CEO(sus)} = 140 \text{ Vdc}$

- High DC Current Gain @ I_C = 8.0 Adc h_{FE} = 15 (Min)
- Low Collector-Emitter Saturation Voltage V_{CE(sat)} = 1.0 Vdc (Max) @ I_C = 10 Adc

MAXIMUM RATINGS (1)

Rating	Symbol	Value	Unit	
Collector-Emitter Voltage	V _{CEO}	140	Vdc	
Collector-Base Voltage	V _{CB}	140	Vdc	
Emitter-Base Voltage	V _{EB}	7.0	Vdc	
Collector Current – Continuous Peak	lo	16 20	Adc	
Base Current – Continuous	Ι _Β	5.0	Adc	
Total Device Dissipation @ T _C = 25°C Derate above 25°C	PD	200 1.14	Watts W/°C	
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-65 to +200	°C	

TELEPHONE: (973) 376-2922

NPN

2N5631

2N6031

16 AMPERE POWER TRANSISTORS

COMPLEMENTARY

SILICON

140 VOLTS

200 WATTS

(212) 227-6005 FAX: (973) 376-8960

÷

THERMAL CHARACTERISTICS (1)

Characteristic	Symbol	Мах	Unit
Thermal Resistance, Junction to Case	θ _{JC}	0.875	°C/W

(1) Indicates JEDEC Registered Data.

Safe Area Curves are indicated by Figure 5. All Limits are applicable and must be observed.

NJ Semi-Conductors reserves the right to change test conditions, parameters limits and package dimensions without notice information furnished by NJ Semi-Conductors is believed to be both accurate and reliable at the time of going to press. However NJ Semi-Conductors assumes no responsibility for any errors or omissions discovered in its use. NJ Semi-Conductors encourages customers to verify that datasheets are current before placing orders.

Quality Semi-Conductors

2N5631 2N6031

ELECTRICAL CHARACTERISTICS (T_C = 25°C unless otherwise noted)

Characteristic		Symbol	Min	Max	Unit
OFF CHARACTERISTICS		•			
Collector–Emitter Sustaining Voltage (2) $(I_C = 200 \text{ mAdc}, I_B = 0)$		V _{CEO(sus)}	140	-	Vdc
Collector–Emitter Cutoff Current $(1/2 - 70)$	·	ICEO			mAdc
			_	2.0	
Collector–Emitter Cutoff Current (V_{CE} = Rated V_{CB} , $V_{EB(off)}$ = 1.5 Vdc) (V_{CE} = Rated V_{CB} , $V_{EB(off)}$ = 1.5 Vdc, T_{C} = 150°C)		ICEX		2.0 7.0	mAdc
Collector-Base Cutoff Current $(V_{CB} = Rated V_{CB}, I_E = 0)$		Сво	-	2.0	mAdc
Emitter–Base Cutoff Current (V_{BE} = 7.0 Vdc, I_C = 0)		I _{EBO}	-	5.0	mAdc
ON CHARACTERISTICS (2)					1
DC Current Gain ($I_C = 8 \text{ Adc}, V_{CE} = 2.0 \text{ Vdc}$) ($I_C = 16 \text{ Adc}, V_{CE} = 2.0 \text{ Vdc}$)		h _{FE}	15 4.0	60 -	-
CollectorEmitter Saturation Voltage ($I_C = 10 \text{ Adc}, I_B = 1.0 \text{ Adc}$) ($I_C = 16 \text{ Adc}, I_B = 4.0 \text{ Adc}$)		V _{CE(sat)}		1.0 2.0	Vdc
Base–Emitter Saturation Voltage (I _C = 10 Adc, I _B = 1.0 Adc)		V _{BE(sat)}	-	1.8	Vdc
Base–Emitter On Voltage (I _C = 8.0 Adc, V _{CE} = 2.0 Vdc)		V _{BE(on)}	-	1.5	Vdc
DYNAMIC CHARACTERISTICS		· · · · · · · · · · · · · · · · · · ·	<u>-</u> ,	-	L
Current–Gain – Bandwidth Product (3) (I _C = 1.0 Adc, V _{CE} = 20 Vdc, f _{test} = 0.5 MHz)		f _T	1.0	-	MHz
Output Capacitance (V _{CB} = 10 Vdc, I _E = 0, f = 0.1 MHz)	2N5631 2N6031	C _{ob}		500 1000	pF
Small–Signal Current Gain (I _C = 4.0 Adc, V _{CE} = 10 Vdc, f = 1.0 kHz)		h _{fe}	15	-	-

1

*Indicates JEDEC Registered Data. (1) Pulse Test: Pulse Width \leq 300 µs, Duty Cycle \geq 2.0%. (2) f_T = |h_{fe}| • f_{test}