New Jersey Semi-Conductor Products, Inc.

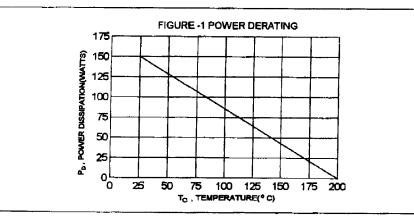
20 STERN AVE. SPRINGFIELD, NEW JERSEY 07081 U.S.A.

DARLINGTON COMPLEMENTARY SILICON-POWER TRANSISTORS

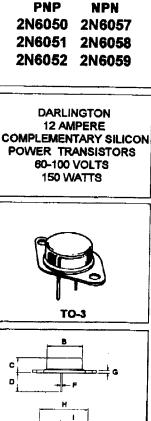
...designed for general-purpose power amplifier and low frequency switching applications

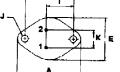
FEATURES:

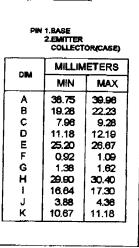
* Monolithic Construction with Built-in Base-Emitter Shunt Resistors.


* High DC Current Gain hFE = 3500 (typ)@ I_C = 5.0 A

MAXIMUM RATINGS


Characteristic	Symbol	2N6050 2N6057	2N6051 2N6058	2N6052 2N6059	Unit
Collector-Emitter Voltage	V _{CEO}	60	80	100	v
Collector-Base Voltage	V _{CBO}	60	80	100	v
Emitter-Base Voltage	VEBO	5			v
Collector Current - Continuous -Peak	l _c	12 20			A
Base Current	l _B	0.2			A
Total Power Dissipation@T _C = 25°C Derated above 25°C	Po	150 0.857			 ₩∕°C
Operating and Storage Junction Temperature Range	Т _Ј ,Т _{ата}	-65 to +200			°C


THERMAL CHARACTERISTICS


Characteristic	Symbol	Max	Unit
Thermal Resistance Junction to Case	Rejc	1.17	°C/W

TELEPHONE: (973) 376-2922 (212) 227-6005 FAX: (973) 376-8960

NJ Semi-Conductors reserves the right to change test conditions, parameters limits and package dimensions without notice information furnished by NJ Semi-Conductors is believed to be both accurate and reliable at the time of going to press. However NJ Semi-Conductors assumes no responsibility for any errors or omissions discovered in its use. NJ Semi-Conductors encourages customers to verify that datasheets are current before placing orders.

Quality Semi-Conductors

ELECTRICAL CHARACTERISTICS ($T_c = 25$ °C unless otherwise noted)

Ch aracteristic	Symbol	Min	Max	Unit

OFF CHARACTERISTICS

Collector - Emitter Sustaining Voltage (1) (I _C = 100 mA, I _B = 0)	2N6050, 2N6057 2N6051, 2N6058 2N6052, 2N6059	V _{CEO(SUS)}	60 80 100		v
Collector Cutoff Current $(V_{ce} = 30 V, I_{e} = 0)$ $(V_{ce} = 40 V, I_{e} = 0)$ $(V_{ce} = 50 V, I_{e} = 0)$	2N6050, 2N6057 2N6051, 2N6058 2N6052, 2N6059	ICEO		1.0 1.0 1.0	mA
Collector Cutoff Current (V _{ce} = Rated V _{ceo} , V _{es(en)} = 1.5 V) (V _{ce} = Rated V _{ceo} , V _{es(en)} = 1.5 V, T _c = 150	°C)	ICEX		0.5 5.0	mA
Emitter Cutoff Current (V _{EB} = 5.0 V , I _C = 0)		IEBO		2.0	mA

ON CHARACTERISTICS (1)

DC Current Gain (I _C = 6.0 A, V _{CE} = 3.0 V) (I _C ≈ 12 A, V _{CE} = 3.0 V)	hFE	750 100	18000	
Collector-Emitter Saturation Voltage ($I_c = 6.0 \text{ A}, I_B = 24 \text{ m A}$) ($I_c = 12 \text{ A}, I_B = 120 \text{ mA}$)	V _{CE(sat)}		2.0 3.0	v
Base-Emitter On Voltage (I _C = 6.0 A, V _{CE} ≕ 3.0 V)	V _{BE(on)}		2.8	v
Base-Emitter Saturation Voltage (I _C = 12 A, I _B =120 m A)	V _{BE(sat)}		4.0	v

DYNAMIC CHARACTERISTICS

Current-Gain-Bandwidth Product (2) ($I_c = 5.0 \text{ A}, V_{CE} = 3.0 \text{ V}, f = 1.0 \text{ MHz}$)	f _T	4.0	MHz
Small-Signal Current Gain (h _{fe}	300	

(1) Pulse Test; Pulse width \leq 300 us , Duty Cycle \leq 2.0%

(2) $f_T = |h_{fe}| \cdot f_{test}$