20 STERN AVE. SPRINGFIELD, NEW JERSEY 07081 U.S.A. TELEPHONE: (973) 376-2922

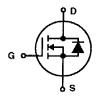
(212) 227-6005

FAX: (973) 376-8960

2N6796

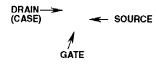
8A, 100V, 0.180 Ohm, N-Channel Power MOSFET

The 2N6796 is an N-Channel enhancement mode silicon gate power field effect transistor designed for applications such as switching regulators, switching converters, motor drivers, relay drivers, and drivers for high power bipolar switching transistors requiring high speed and low gate drive power. This type can be operated directly from integrated circuits.


Ordering Information

PART NUMBER	PACKAGE	BRAND
2N6796	TO-205AF	2N6796

Features


- 8A, 100V
- $r_{DS(ON)} = 0.180\Omega$
- SOA is Power Dissipation Limited
- · Nanosecond Switching Speeds
- · Linear Transfer Characteristics
- · High Input Impedance
- Majority Carrier Device

Symbol

Packaging

JEDEC TO-205AF

$\label{eq:total Absolute Maximum Ratings} \qquad T_C = 25^o \text{C. Unless Otherwise Specified}$

	2N6796	UNITS
Drain to Source Breakdown Voltage (Note 1)	100	V
Drain to Gate Voltage (R _{GS} = 20kΩ) (Note 1)	100	V
Continuous Drain Current (Note 1)	8	Α
$T_{C} = 100^{\circ}C \dots I_{D}$	5	A
Pulsed Drain Current (Note 1)	32	A
Gate to Source Voltage (Note 1)	±20	V
Continuous Source Current (Body Diode)	8	A
Pulse Source Current (Body Diode)	32	A
Maximum Power Dissipation (Figure 1)	25	w
Linear Derating Factor (Figure 1)	0.20	W/°C
Operating and Storage Temperature	-55 to 150	°C
Maximum Temperature for Soldering	33 13 1,44	Ŭ
Leads at 0.063in (1.6mm) from Case for 10s	300	°C
Package Body for 10s, See Techbrief 334	260	°Č
Prog		

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

NOTE:

1. $T_J = 25^{\circ}C$ to $125^{\circ}C$.

Electrical Specifications $T_C = 25^{o}C$, Unless Otherwise Specified

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNITS
Drain to Source Breakdown Voltage	BV _{DSS}	I _D = 0.25mA, V _{GS} = 0V	100	-		V
Gate Threshold Voltage	V _{GS(TH)}	$V_{GS} = V_{DS}$, $I_D = 0.5 \text{mA}$	2	-	4	V
Zero Gate Voltage Drain Current	I _{DSS}	V _{DS} = 100V, V _{GS} = 0V	-	-	250	μА
		V _{DS} = 80V, V _{GS} = 0V, T _C = 125°C	-	-	1000	μА
On-State Drain Current (Note 2)	V _{DS(ON)}	I _D = 8A, V _{GS} = 10V	-	-	1.56	v
Gate to Source Leakage Current	lgss	V _{GS} = ±20V	-	-	±100	nA
Drain to Source On Resistance (Note 2)	rDS(ON)	I _D = 5A, V _{GS} = 10V	-	0.14	0.180	Ω
		I _D = 5A, V _{GS} = 10V, T _C = 125°C	-	-	0.350	Ω
Diode Forward Voltage (Note 2)	V _{SD}	T _C = 25°C, I _S = 8A, V _{GS} = 0V	0.75	-	1.5	V
Forward Transconductance (Note 2)	9fs	V _{DS} = 5V, I _D = 5A	3	5.5	9	S
Turn-On Delay Time	td(ON)	$V_{DD}\cong 30V$, $I_{D}=5A$, $R_{G}=50\Omega$ (Figure 17) MOSFET Switching Times are Essentially Independent of Operating Temperature	-	-	30	ns
Rise Time	t _r		-	-	75	ns
Turn-Off Delay Time	td(OFF)		_	-	40	ns
Fall Time	t _f		-	-	45	ns
Input Capacitance	C _{ISS}	$V_{DS} = 25V$, $V_{GS} = 0V$, $f = 1MHz$, (Figure 11)	350	600	900	pF
Output Capacitance	Coss		150	300	500	pF
Reverse Transfer Capacitance	C _{RSS}		50	100	150	pF
Thermal Resistance Junction to Case	R ₀ JC		-	- i	5	°C/W
Thermal Resistance Junction to Ambient	R _{0JA}	Free Air Operation	-		175	°C/W
Safe Operating Area	SOA	V _{DS} = 80V, I _D = 310mA	25	-	-	W
		V _{DS} = 3.12V, I _D = 8A	25	_ +		W

Source to Drain Diode Specifications

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNITS
Reverse Recovery Time	t _{rr}	$T_J = 150^{\circ}$ C, $I_{SD} = 8$ A, $dI_{SD}/dt = 100$ A/ μ s	-	300	-	ns
Reverse Recovered Charge	Q _{RR}	$T_J = 150^{\circ}\text{C}$, $I_{SD} = 8\text{A}$, $dI_{SD}/dt = 100\text{A}/\mu\text{s}$	-	1.5	-	μC