20 STERN AVE. SPRINGFIELD, NEW JERSEY 07081 U.S.A.

TELEPHONE: (973) 376-2922

(212) 227-6005

FAX: (973) 376-8960

## 3N187

# Silicon Dual Insulated - Gate Field-Effect Transistor

With Integrated Gate-Protection Circuits

For Military and Industrial Applications up to 300 MHz

#### Device Features

- Back-to-back diodes protect each gate against handling and in-circuit transients
- High forward transconductance  $g_{fs}$  = 12,000  $\mu$ mho (typ.)
   High unneutralized RF power gain  $G_{ps}$  = 18 dB(typ.) at 200 MHz
   Low VHF noise figure 3.5 dB(typ.) at 200 MHz

## Applications

- RF amplifier, mixer, and IF amplifier in military, and industrial communications equipment
- Aircraft and marine vehicular receivers
- CATV and MATV equipment
- Telemetry and multiplex equipment

## Performance Features

- Superior cross-modulation performance and greater dynamic range than bipolar or single-gate FET's
- Wide dynamic range permits large-signal handling before overload
- Virtually no ago power required
- Greatly reduces spurious responses in FM receivers

## Maximum Ratings,

Absolute-Maximum Values, at  $T_A = 25^{\circ}C$ 

| DRAIN-TO-SOURCE VOLTAGE, VDS0.2 to +20                                                                     | V  |
|------------------------------------------------------------------------------------------------------------|----|
| GATE No. 1-TO-SOURCE VOLTAGE, VG1S:                                                                        | -  |
| Continuous (de) 6 to +3                                                                                    | v  |
| Peak ac6 to +6                                                                                             | v  |
| GATE No. 2-TO-SOURCE VOLTAGE, V <sub>G28</sub> : Continuous (dc)6 to 30% of V <sub>DS</sub> Peak ac6 to +6 | •  |
| Continuous (dc) 6 to 30% of Vro                                                                            | V  |
| Peak ac6 to +6                                                                                             | Ÿ  |
| *DRAIN-TO-GATE VOLTAGE,                                                                                    |    |
| V <sub>DG1</sub> OR V <sub>DG2</sub> +20                                                                   | V  |
| * DRAIN CURRENT, ID 50                                                                                     | mA |
| * TRANSISTOR DISSIPATION PT:                                                                               |    |
| At ambient \up to 25°C 330                                                                                 | mW |
| temperatures above 25°Cderate linearly at                                                                  |    |
| * AMBIENT TEMPERATURE RANGE: 2.2 mW/°C                                                                     |    |
| Storage and Operating -65 to +175                                                                          | °C |
| * LEAD TEMPERATURE (During Soldering):                                                                     | -  |
| At distances ≥ 1/32 inch from                                                                              |    |
| seating surface for 10 seconds max. 265                                                                    | °C |
| # In possisiones with IEDEC Besteinsting D. C.                                                             |    |

\* In accordance with JEDEC Registration Data Format JS-9 RDF-19A



ELECTRICAL CHARACTERISTICS, at  $T_A = 25^{\circ}$  C unless otherwise specified

| CHARACTERISTICS                                                                       | SYMBOL                   | TEST CONDITIONS                                                                                                     | LIMITS   |        |         | UNITS    |
|---------------------------------------------------------------------------------------|--------------------------|---------------------------------------------------------------------------------------------------------------------|----------|--------|---------|----------|
| OHAMAOT EMISTICS                                                                      | JIMDOL                   | LEST CONDITIONS                                                                                                     | Min.     | Тур.   | Max.    | 0.1113   |
| Gate No. 1-to-Source Cutoff Voltage                                                   | V <sub>G1S(off)</sub>    | $V_{DS} = +15 V_1 I_D = 50 \mu A$<br>$V_{G2S} = +4 V$                                                               | -0.5     | -2     | -4      | v        |
| Gate No. 2-to-Source Culoff Voltage                                                   | V <sub>G2S(off)</sub>    | $V_{DS} = +15 \text{ V, I}_{D} = 50 \mu\text{A}$ $V_{G1S} = 0$                                                      | -0.5     | -2     | -4      | V        |
| Gate No. 1-Terminal Forward Current                                                   | G1SSF                    | $V_{G1S} = +1 V V_{A} = 25^{\circ} C V_{G2S} = V_{DS} = 0 T_{A} = 100^{\circ} C$                                    |          | =      | 50<br>5 | nΑ<br>μΑ |
| Gate No. 1-Terminal Reverse Current                                                   | <sup>‡</sup> G1SSR       | V <sub>G1S</sub> = -6 V<br>V <sub>G2S</sub> = V <sub>DS</sub> =0 T <sub>A</sub> = 25° C<br>T <sub>A</sub> = 100° C  | -        | -      | 50<br>5 | nA<br>μA |
| Gate No. 2-Terminal Forward Current                                                   | IG2SSF                   | V <sub>G2S</sub> = +6 V T <sub>A</sub> = 25° C<br>V <sub>G1S</sub> = V <sub>DS</sub> =0 T <sub>A</sub> = 100° C     | =        | =      | 50<br>5 | nA<br>μA |
| Gate No. 2-Terminal Reverse Current                                                   | I <sub>G2SSR</sub>       | V <sub>G2S</sub> = -6 V<br>V <sub>G1S</sub> = V <sub>DS</sub> = 0 T <sub>A</sub> = 25° C<br>T <sub>A</sub> = 100° C | -        | -      | 50<br>5 | πA<br>μA |
| Zero-Bias Drain Current                                                               | 1 <sub>DS</sub>          | V <sub>DS</sub> = +15 V<br>V <sub>G2S</sub> = +4 V<br>V <sub>G1S</sub> = 0                                          | 5        | 15     | 30      | mΑ       |
| Forward Transconductance<br>(Gate No. 1-to-Drain)                                     | g <sub>fs</sub>          | V <sub>DS</sub> = +15 V, I <sub>D</sub> = 10 mA<br>V <sub>G2S</sub> = +4 V, f = 1 kHz                               | 7000     | 12,000 | 18,000  | μmho     |
| Small-Signal, Short-Circuit Input Capacitance t                                       | Ciss                     |                                                                                                                     | 4.0      | 6.0    | 8.5     | pF       |
| Small-Signal, Short-Circuit,<br>Reverse Transfer Capacitance<br>(Drain-to-Gate No. 1) | C <sub>rss</sub>         | $V_{DS} = +15 \text{ V}, I_D = 10 \text{ mA}$ $V_{G2S} = +4 \text{ V}, f = 1 \text{ MHz}$                           | 0.005    | 0.02   | 0.03    | pF       |
| Small-Signal, Short-Circuit Output Capacitanc                                         | C <sub>oss</sub>         |                                                                                                                     | -        | 2.0    | _       | pF       |
| Power Gain (see Fig. 1)                                                               | GPS                      |                                                                                                                     | 16       | 18     | 22      | dB       |
| Maximum Available Power Gain                                                          | MAG                      |                                                                                                                     | -        | 20     | -       | dB       |
| Maximum Usable Power Gain (unneutralized)                                             | MUG                      | V <sub>DS</sub> = +15 V, 1 <sub>D</sub> = 10 mA<br>V <sub>G2S</sub> = +4 V, f = 200 MHz                             | -        | 20▲    | -       | dΒ       |
| Noise Figure (see Fig. 1)                                                             | NF                       |                                                                                                                     | -        | 3.5    | 4.5     | dB       |
| Magnitude of Forward Transadmittance                                                  | Y <sub>fs</sub>          |                                                                                                                     | -        | 12,000 | -       | μmho     |
| Phase Angle of Forward Transadmittance                                                | θ                        |                                                                                                                     | <b>-</b> | -35    |         | Degrees  |
| Magnitude of Reverse Transadmittance                                                  | Y <sub>rs</sub>          |                                                                                                                     | -        | 25     | -       | μmho     |
| Angle of Reverse Transadmittance                                                      | $\theta_{IS}$            |                                                                                                                     | _        | -25    | -       | Degrees  |
| Input Resistance                                                                      | <sup>1</sup> iss         |                                                                                                                     | -        | 1.0    | -       | kΩ       |
| Output Resistance                                                                     | ross                     |                                                                                                                     | -        | 2.8    | -       | kΩ       |
| Gate-to-Source<br>Forward Breakdown Voltage:<br>Gate No, 1<br>Gate No, 2              | V(BR)G1SSF<br>V(BR)G2SSF | IG1SSF = IG2SSF = 100 µA                                                                                            | 6.5      | 10     | -       | v        |
| Gate-to-Source<br>Reverse Breakdown Voltage:<br>Gate No. 1<br>Gate No. 2              | V(BR)GISSR<br>V(BR)G2SSR | IG155R = IG255R =-100 μA                                                                                            | -6.5     | -10    | -       | ٧        |
|                                                                                       | (DIV)GESSIV              | OPERATIVE COL                                                                                                       | 1        |        |         | <u> </u> |

<sup>▲</sup> Limited only by practical design considerations.

OPERATING CONSIDERATIONS
The flexible leads of the 3N187 are usually soldered to the circuit elements. As in the case of any high-frequency semiconductor device, the tips of soldering irons MUST be grounded.

<sup>†</sup> Capacitance between Gate No. 1 and all other terminals

Three-terminal measurement with Gate No. 2 and Source returned to ground terminal.

In accordance with JEDEC Registration Data Format J\$-9 RDF-19A