$\mathcal{N}_{\varepsilon \omega} \mathcal{I}_{\varepsilon r s \varepsilon y} S_{\varepsilon m i-C o n d u c t o r} \mathfrak{P}_{\text {roduct }}, I_{n c}$.

FEATURES

- High power gain
- Easy power control
- Good thermal stability
- Gold metallization ensures excellent reliability.

APPLICATIONS

- Broadcast transmitters in the VHF frequency range.

DESCRIPTION

Dual push-pull silicon N -channel enhancement mode vertical D-MOS transistor encapsulated in a 4-lead, SOT262A1 balanced flange package with two ceramic caps. The mounting flange provides the common source connection for the transistors.

CAUTION
This product is supplied in anti-static packing to prevent damage caused by electrostatic discharge during transport and handling.

PINNING - SOT262A1

PIN	DESCRIPTION
1	drain 1
2	drain 2
3	gate 1
4	gate 2
5	source

Fig. 1 Simplified outline and symbol.

QUICK REFERENCE DATA

RF performance at $\mathrm{T}_{\mathrm{h}}=25^{\circ} \mathrm{C}$ in a push-pull common source test circuit.

MODE OF OPERATION	\mathbf{f} $(\mathbf{M H z})$	$\mathbf{V}_{\mathbf{D S}}$ (\mathbf{V})	$\mathbf{P}_{\mathbf{L}}$ (\mathbf{W})	$\mathbf{G}_{\mathbf{p}}$ (dB)	$\eta_{\mathbf{D}}$ $(\%)$
CW, class-B	108	50	300	>20	>60
CW, class-C	108	50	300	typ. 18	typ. 80
CW, class-AB	225	50	250	>14 typ. 16	>50 typ. 55

WARNING
Product and environmental safety - toxic materials
This product contains beryllium oxide. The product is entirely safe provided that the BeO discs are not damaged.
All persons who handle, use or dispose of this product should be aware of its nature and of the necessary safety
precautions. After use, dispose of as chemical or special waste according to the regulations applying at the location of
the user. It must never be thrown out with the general or domestic waste.

[^0]
LIMITING VALUES

In accordance with the Absolute Maximum System (IEC 60134).

SYMBOL	PARAMETER	CONDITIONS	MIN.	MAX.	UNIT
Per transistor section					
V_{DS}	drain-source voltage		-	125	V
V_{GS}	gate-source voltage		-	± 20	V
I_{D}	drain current (DC)		-	18	A
$\mathrm{P}_{\text {tot }}$	total power dissipation	$\mathrm{T}_{\text {mb }} \leq 25^{\circ} \mathrm{C}$; total device; both sections equally loaded	-	500	W
$\mathrm{T}_{\text {stg }}$	storage temperature		-65	150	${ }^{\circ} \mathrm{C}$
T	junction temperature		-	200	${ }^{\circ} \mathrm{C}$

THERMAL CHARACTERISTICS

SYMBOL	PARAMETER	CONDITIONS	VALUE	UNIT
$R_{\mathrm{th} j-\mathrm{mb}}$	thermal resistance from junction to mounting base	total device; both sections equally loaded.	max. 0.35	K/W
$R_{\mathrm{th} \text { mb-h }}$	thermal resistance from mounting base to heatsink	total device; both sections equally loaded.	max. 0.15	K/W

Total device; both sections equally loaded.
(1) Current is this area may be limited by $\mathrm{R}_{\mathrm{DSon}}$.
(2) $\mathrm{T}_{\mathrm{mb}}=25^{\circ} \mathrm{C}$.

Fig. 2 DC SOAR.

Total device; both sections equally loaded.
(1) Continuous operation.
(2) Short-time operation during mismatch.

Fig. 3 Power derating curves.

CHARACTERISTICS

$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$ unless otherwise specified.

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
Per transistor section						
$\mathrm{V}_{\text {(BR) }}$ DSs	drain-source breakdown voltage	$V_{G S}=0 ; l_{D}=100 \mathrm{~mA}$	125	-	-	V
loss	drain-source leakage current	$V_{G S}=0 ; V_{D S}=50 \mathrm{~V}$	-	-	2.5	mA
Gss	gate-source leakage current	$\mathrm{V}_{\mathrm{GS}}= \pm 20 \mathrm{~V} ; \mathrm{V}_{\mathrm{DS}}=0$	-	-	1	$\mu \mathrm{A}$
$\mathrm{V}_{\mathrm{GSth}}$	gate-source threshold voltage	$V_{D S}=10 \mathrm{~V} ; l_{\text {d }}=50 \mathrm{~mA}$	2	-	4.5	V
$\Delta V_{G S}$	gate-source voltage difference of both sections	$V_{D S}=10 \mathrm{~V} ; \mathrm{l}_{\mathrm{D}}=50 \mathrm{~mA}$	-	-	100	mV
g_{fs}	forward transconductance	$V_{D S}=10 \mathrm{~V} ; \mathrm{l}_{\mathrm{D}}=5 \mathrm{~A}$	4.5	6.2	-	S
$\mathrm{g}_{\mathrm{fs} 1} / \mathrm{g}_{\mathrm{f} 2}$	forward transconductance ratio of both sections	$V_{D S}=10 \mathrm{~V} ; \mathrm{l}_{\mathrm{D}}=5 \mathrm{~A}$	0.9	-	1.1	
R ${ }_{\text {DSon }}$	drain-source on-state resistance	$V_{G S}=10 \mathrm{~V} ; \mathrm{l}_{\mathrm{D}}=5 \mathrm{~A}$	-	0.2	0.3	Ω
losx	drain cut-off current	$\mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V} ; \mathrm{V}_{\mathrm{DS}}=10 \mathrm{~V}$	-	25	-	A
$\mathrm{C}_{\text {is }}$	input capacitance	$V_{G S}=0 ; V_{D S}=50 \mathrm{~V} ; \mathrm{f}=1 \mathrm{MHz}$	-	480	-	pF
C_{OS}	output capacitance	$V_{G S}=0 ; V_{D S}=50 \mathrm{~V} ; \mathrm{f}=1 \mathrm{MHz}$	-	190	-	pF
C_{rs}	feedback capacitance	$V_{G S}=0 ; V_{D S}=50 \mathrm{~V} ; \mathrm{f}=1 \mathrm{MHz}$	-	14	-	pF
$\mathrm{C}_{\mathrm{d}-\mathrm{f}}$	drain-flange capacitance		-	5.4	-	pF

\mathbf{V}_{GS} group indicator

GROUP	LIMITS (V)		GROUP	LIMITS (V)	
	MIN.	MAX.		MIN.	MAX.
A	2.0	2.1	O	3.3	3.4
B	2.1	2.2	P	3.4	3.5
C	2.2	2.3	Q	3.5	3.6
D	2.3	2.4	R	3.6	3.7
E	2.4	2.5	S	3.7	3.8
F	2.5	2.6	T	3.8	3.9
G	2.6	2.7	U	3.9	4.0
H	2.7	2.8	V	4.0	4.1
J	2.8	2.9	W	4.1	4.2
K	2.9	3.0	X	4.2	4.3
L	3.0	3.1	Y	4.3	4.4
M	3.1	3.2	Z	4.4	4.5
N	3.2	3.3			

[^0]: i. Semi-Conductors reserves the right to change test conditions, parameter limits and packuge dimensions without notice Information furmished by NJ Semi-Conductors is believed to be both accurate and reliable all the lime of guing to press. However w
 astemers to wetit hat thasheets ore current before placing wriers

