New Jersey Semi-Conductor Products, Inc.

20 STERN AVE. SPRINGFIELD, NEW JERSEY 07081 U.S.A. TELEPHONE: (973) 376-2922 (212) 227-6005 FAX: (973) 376-8960

Features

- 4.0A and 5.0A, 150V and 200V
- r_{DS(ON)} = 0.8Ω and 1.2Ω
- SOA is Power Dissipation Limited
- Nanosecond Switching Speeds
- Linear Transfer Characteristics
- High Input Impedance
- Majority Carrier Device
- •

Description

These are N-Channel enhancement mode silicon gate power field effect transistors. They are advanced power MOSFETs designed, tested, and guaranteed to withstand a specified level of energy in the breakdown avalanche mode of operation. All of these power MOSFETs are designed for applications such as switching regulators, switching convertors, motor drivers, relay drivers, and drivers for high power bipolar switching transistors requiring high speed and low gate drive power. These types can be operated directly from integrated circuits.

Symbol

Ordering Information

PART NUMBER	PACKAGE	BRAND
IRF220	TO-204AA	IRF220
IRF221	TO-204AA	IRF221
IRF222	TO-204AA	IRF222
IRF223	TO-204AA	IRF223

NOTE: When ordering, use the entire part number.

Packaging

JEDEC TO-204AA

NJ Semi-Conductors reserves the right to change test conditions, parameter limits and package dimensions without notice. Information furnished by NJ Semi-Conductors is believed to be both accurate and reliable at the time of going to press. However, NJ Semi-Conductors assumes no responsibility for any errors or omissions discovered in its use. NJ Semi-Conductors encourages customers to verify that datasheets are current before placing orders.

Quality Semi-Conductors

Absolute Maximum Ratings T_C = 25°C, Unless Otherwise Specified

,

	IRF220	IRF221	IRF222	IRF223	UNITS
Drain to Source Voltage (Note 1)VDS	200	150	200	150	V
Drain to Gate Voltage ($R_{GS} = 20k\Omega$) (Note 1) V_{DGR}	200	150	200	150	V
Continuous Drain CurrentID	5.0	5.0	4.0	4.0	А
$T_{C} = 100^{\circ}C$ I _D	3.0	3.0	2.5	2.5	А
Pulsed Drain Current (Note 3) IDM	20	20	16	16	Α
Gate to Source VoltageVGS	±20	±20	±20	±20	V
Maximum Power DissipationPD	40	40	40	40	W
Linear Derating Factor	0.32	0.32	0.32	0.32	W/ºC
Single Pulse Avalanche Rating.	85	85	85	85	mJ
Operating and Storage Temperature	-55 to 150	-55 to 150	-55 to 150	-55 to 150	°C
Maximum Temperature for Soldering	200	200	200	200	°C
Leads at 0.063in (1.6mm) from Case for 10s IL Package Body for 10s, See Techbrief 334	300 260	260	260	260	°C

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

NOTE:

1. $T_J = 25^{\circ}C$ to $125^{\circ}C$.

Electrical Specifications $T_{C} = 25^{\circ}C$, Unless Otherwise Specified

PARAMETER	SYMBOL	TEST CONDITIONS		ТҮР	мах	UNITS
Drain to Source Breakdown Voltage IRF220, IRF222	BV _{DSS}	I _D = 250μA, V _{GS} = 0V, (Figure 10)		-	÷	v
IRF221, IRF223			150	-	-	V
Gate Threshold Voltage	V _{GS(TH)}	V _{DS} = V _{GS} , I _D = 250µA	2.0	-	4.0	V
Zero Gate Voltage Drain Current	IDSS	V _{DS} = Rated BV _{DSS} , V _{GS} = 0V	-	-	25	μA
	1	V_{DS} = 0.8 x Rated BV _{DSS} , V_{GS} = 0V, T _J = 125 ^o C	-	_	250	μA
On-State Drain Current (Note 2) IRF220, IRF221	ID(ON)	$V_{DS} > I_{D(ON)} \times r_{DS(ON)MAX}, V_{GS} = 10V$		-	-	A
IRF222, IRF223	1		4.0	-	-	A
Gate to Source Leakage Current	IGSS	V _{GS} = ±20V	-	-	±100	nA
Drain to Source On Resistance (Note 2) IRF220, IRF221	^r DS(ON)	I _D = 2.5A, V _{GS} = 10V, (Figure 8)		0.5	0.8	Ω
IRF222, IRF223			-	0.8	1.2	Ω
Forward Transconductance (Note 2)	9 _{fs}	$V_{DS} > I_{D(ON)} \times r_{DS(ON)MAX}$, $I_D = 2.5A$	1.3	2.5	-	S
Turn-On Delay Time	t _{d(ON)}	V_{DD} = 0.5 x Rated BV _{DSS} , I _D ≈ 2.5A, R _G = 50Ω		20	40	ns
Rise Time	tr	For IRF220, 222 R _L = 80Ω For IRF221, 223 R _L = 60Ω	-	30	60	ns
Turn-Off Delay Time	td(OFF)	(Figures 17, 18) MOSFET Switching Times are Essentially Independent of Operating Temperature		50	100	ns
Fall Time	tf			30	60	ns
Total Gate Charge (Gate to Source + Gate to Drain)	Q _{g(TOT)}	V_{GS} = 10V, I _D = 6.0A, V_{DS} = 0.8 x Rated BV _{DSS} I _{g(REF)} = 1.5mA, (Figures 14, 19, 20) Gate Charge is Essentially Independent of Operating Temperature		11	15	nC
Gate to Source Charge	Qgs			5.0	-	nC
Gate to Drain "Miller" Charge	Q _{gd}	1	•	6.0	-	nC

_

PARAMETER	SYMBOL	TEST CONDITIONS		ТҮР	MAX	UNITS
Input Capacitance	C _{ISS}	V _{DS} = 25V, V _{GS} = 0V, f = 1MHz (Figure 11)		450	-	pF
Output Capacitance	Coss			150	-	pF
Reverse Transfer Capacitance	C _{RSS}		-	40	-	pF
Internal Drain Inductance	LD	Measured Between the Contact Screw on the Flange that is Closer to Source and Gate Pins and the Center of Die Modified MOSFET Symbol Showing the Internal Device Inductances	-	5.0	-	nH
Internal Source Inductance	LS	Measured From the Source Lead, 6mm (0.25in) From the Flange and the Source Bonding Pad	-	12.5	-	nH
Thermal Resistance Junction to Case	R _{0JC}		-	-	3.12	°C/W
Thermal Resistance Junction to Ambient	R _{θJA}	Free Air Operation	-	-	30	°C/W

Electrical Specifications $T_C = 25^{\circ}C$, Unless Otherwise Specified (Continued)

Source to Drain Diode Specifications

.

.

PARAMETER	SYMBOL	TEST CONDITIONS		MIN	түр	MAX	UNITS
Continuous Source to Drain Current IRF220, IRF221	I _{SD}	Modified MOSFET Symbol Showing the Integral Reverse	° [□]	-	÷	5.0	A
IRF222, IRF223	1	P-N Junction Rectifier	-	-	4.0	А	
Pulse Source to Drain Current (Note 3) IRF220, IRF221	I _{SDM}		Godi	-	-	20	A
IRF222, IRF223	1		σs	-	-	16	A
Source to Drain Diode Voltage (Note 2) IRF220, IRF221	V _{SD}	T _C = 25 ^o C, I _{SD} = 5.0A, V _{GS} = 0V, (Figure 13)		-	-	2.0	v
IRF222, IRF223		$T_{C} = 25^{\circ}C$, $I_{SD} = 4.0A$, $V_{GS} = 0V$, (Figure 13)		-	-	1.8	V
Reverse Recovery Time	t _{rr}	T _J = 150 ^o C, I _{SD} = 5.0A, dI _{SD} /dt = 100A/μs		-	350	-	ns
Reverse Recovery Charge	Q _{RR}	T _J = 150 ^o C, I _{SD} = 5.0A, dI _{SD} /dt = 100A/µs		-	2.3	-	μC