New Jersey Semi-Conductor Products, Inc.

20 STERN AVE. SPRINGFIELD, NEW JERSEY 07081 U.S.A. TELEPHONE: (973) 376-2922

(212) 227-6005

FAX: (973) 376-8960

REPETITIVE AVALANCHE AND dv/dt RATED HEXFET®TRANSISTORS THRU-HOLE (TO-204AA/AE)

IRF460 500V, N-CHANNEL

Product Summary

Part Number	BVDSS	RDS(on)	ID
IRF460	500V	0.27Ω	21

The HEXFET transistors also feature all of the well established advantages of MOSFETs such as voltage control, very fast switching, ease of paralleling and temperature stability of the electrical parameters.

They are well suited for applications such as switching power supplies, motor controls, inverters, choppers, audio amplifiers and high energy pulse circuits.

Features:

- Repetitive Avalanche Ratings
- Dynamic dv/dt Rating
- Hermetically Sealed
- Simple Drive Requirements
- Ease of Paralleling

Absolute Maximum Ratings

	Parameter		Units
$I_D @ V_{GS} = 0V, T_C = 25^{\circ}C$	Continuous Drain Current	21	
$I_D @ V_{GS} = 0V, T_C = 100^{\circ}C$	Continuous Drain Current	14	Α
I _{DM}	Pulsed Drain Current ①	84	
P _D @ T _C - 25°C	Max. Power Dissipation	300	W
	Linear Derating Factor	2.4	W/°C
V _{GS}	Gate-to-Source Voltage	±20	V
EAS	Single Pulse Avalanche Energy ②	1200	mJ
IAR	Avalanche Current ①	21	Α
EAR	Repetitive Avalanche Energy ①	30	mJ
dv/dt	Peak Diode Recovery dv/dt 3	3.5	V/ns
Тј	Operating Junction	-55 to 150	
T _{STG}	Storage Temperature Range		°C
	Lead Temperature	300 (0.063 in. (1.6mm) from case for 10s)	
	Weight	11.5(typical)	g

NJ Semi-Conductors reserves the right to change test conditions, parameter limits and package dimensions without notice. Information furnished by NJ Semi-Conductors is believed to be both accurate and reliable at the time of going to press. However, NJ Semi-Conductors assumes no responsibility for any errors or omissions discovered in its use. NJ Semi-Conductors encourages customers to verify that datasheets are current before placing orders.

Quality Semi-Conductors

IRF460

Electrical Characteristics @ Tj = 25°C (Unless Otherwise Specified)

	Parameter	Min	Тур	Max	Units	Test Conditions
BVDSS	Drain-to-Source Breakdown Voltage	500		_	V	$V_{GS} = 0V, I_{D} = 1.0mA$
ΔBV _{DSS} /ΔT _J	Temperature Coefficient of Breakdown Voltage		0.78	_	V/°C	Reference to 25°C, $I_D = 1.0 \text{mA}$
RDS(on)	Static Drain-to-Source On-State			0.27		$V_{GS} = 10V, I_{D} = 14A$ (6)
,	Resistance	_	_	0.31	Ω	V _{GS} = 10V, I _D =21A ③
VGS(th)	Gate Threshold Voltage	2.0		4.0	V	$V_{DS} = V_{GS}$, $I_{D} = 250 \mu A$
gfs	Forward Transconductance	13			S (75)	$V_{DS} > 15V, I_{DS} = 14A$ ©
IDSS	Zero Gate Voltage Drain Current	_	-	25		V _{DS} =400V,V _{GS} =0V
				250	μΛ	V _{DS} =400V
						$V_{GS} = 0V, T_{J} = 125^{\circ}C$
IGSS	Gate-to-Source Leakage Forward			100	nA	$V_{GS} = 20V$
IGSS	Gate-to-Source Leakage Reverse			-100	nA	$V_{GS} = -20V$
Qg	Total Gate Charge	84		190		$V_{GS} = 10V, ID=21A$
Qgs	Gate-to-Source Charge	12		27	nC	$V_{DS} = 250V$
Qgd	Gate-to-Drain ('Miller') Charge	60	_	135		
td(on)	Turn-On Delay Time			35		$V_{DD} = 250V, I_{D} = 21A,$
tr	Rise Time			120		$R_G = 2.35\Omega$
td(off)	Turn-Off Delay Time		_	130	ns	
$t_{\mathbf{f}}$	Fall Time	_	_	98		
L _S + L _D	Total Inductance		6.1	_	nН	Measured from drain lead (6mm/0.25in, from package) to source lead (6mm/0.25in, from package)
Ciss	Input Capacitance	_	4300			$V_{GS} = 0V$, $V_{DS} = 25V$
Coss	Output Capacitance		1000		рF	f = 1.0MHz
C _{rss}	Reverse Transfer Capacitance		250		-	

Source-Drain Diode Ratings and Characteristics

	Parameter		Min	Тур	Max	Units	Test Conditions
IS	Continuous Source Current (I	Body Diode)	<u> </u>	İ	21	A	
ISM	Pulse Source Current (Body I	Diode) ①		-	84		
V _{SD}	Diode Forward Voltage		 		1.8	V	$T_j = 25^{\circ}C$, $I_S = 21A$, $V_{GS} = 0V$ (§
trr	Reverse Recovery Time				580	nS	$T_j = 25^{\circ}C$, $I_F = 21A$, $di/dt \le 100A/\mu s$
Qrr	Reverse Recovery Charge			—	8.1	μC	V _{DD} ≤ 50V ③
ton	Forward Turn-On Time	Intrinsic turn-on time is negligible. Turn-on speed is substantially controlled by $L_S + L_D$.					

Thermal Resistance

	Parameter	Min	Тур	Max	Units	Test Conditions
RthJC	Junction to Case		_	0.42	00/11/	
R _{thJA}	Junction to Ambient	_		30	°C/W	Typical socket mount