New Jersey Semi-Conductor Products, Inc.

20 STERN AVE. SPRINGFIELD, NEW JERSEY 07081 U.S.A.

TELEPHONE: (973) 376-2922 (212) 227-6005 FAX: (973) 376-8960

IRF710-713 MTP2N35/2N40 N-Channel Power MOSFETs, 2.25 A, 350-400 V Power And Discrete Division

Description

These devices are n-channel, enhancement mode, power MOSFETs designed especially for high speed applications, such as switching power supplies, converters, AC and DC motor controls, relay and solenoid driver and high energy pulse circuits.

- Low R_{DS(on)}
- V_{GS} Rated at ± 20 V
- · Silicon Gate for Fast Switching Speeds
- I_{DSS}, V_{DS(on)}, Specified at Elevated Temperature
 Rugged
- Low Drive Requirements
- Ease of Paralleling

Maximum Ratings

Symbol	Characteristic	Rating IRF710/712 MTP2N40	Rating IRF711/713 MTP2N35	Unit	
V _{DSS}	Drain to Source Voltage ¹ 400		350	V	
VDGR	Drain to Gate Voltage ¹ R _{GS} = 20 k Ω	400	350	V	
V _{GS}	Gate to Source Voltage	± 20	± 20	V	
TJ, Tstg	Operating Junction and Storage Temperatures	-55 to +150	-55 to +150	°C	
ΤL	Maximum Lead Temperature for Soldering Purposes, 1/8" From Case for 5 s	275	275	٦°	

Maximum On-State Characteristics

		IRF710-711	IRF712-713	MTP2N35/40	Unit
R _{DS(on)}	Static Drain-to-Source On Resistance	3.6	5.0	5.0	Ω
l _D	Drain Current Continuous at $T_C = 25^{\circ}C$ Continuous at $T_C = 100^{\circ}C$ Pulsed	1.5 1.0 6.0	1.4 0.9 5.0	1.3 0.8 5.0	A
Maximum	Thermal Characteristics				
R _{ØJC}	Thermal Resistance, Junction to Case	6.4	6.4	2.5	°C/W
R _{ØJA}	Thermal Resistance, Junction to Ambient	80	80	80	°C/W
PD	Total Power Dissipation at $T_{\rm C} = 25^{\circ}{\rm C}$	20	20	50	W

NJ Semi-Conductors reserves the right to change test conditions, parameter limits and package dimensions without notice. Information furnished by NJ Semi-Conductors is believed to be both accurate and reliable at the time of going to press. However, NJ Semi-Conductors assumes no responsibility for any errors or omissions discovered in its use. NJ Semi-Conductors encourages customers to verify that datasheets are current before placing orders.

Quality Semi-Conductors

IRF710 IRF711 **IRF712**

IRF713 MTP2N35 MTP2N40

IRF710-713 MTP2N35/2N40

Symbol	Characteristic	Min	Max	Unit	Test Conditions	
Off Charac	teristics					
V _{(BR)DSS}	Drain Source Breakdown Voltage ¹			V	$V_{GS} = 0 V, I_D = 250 \mu A$	
	IRF710/712/MTP2N40	400				
	IRF711/713/MTP2N35	350				
IDSS	Zero Gate Voltage Drain Current		250	μΑ	V _{DS} = Rated V _{DSS} , V _{GS} = 0 V	
			1000	μA	$V_{DS} = 0.8 \times \text{Rated } V_{DSS},$ $V_{GS} = 0 \text{ V}, \text{ T}_{C} = 125^{\circ}\text{C}$	
IGSS	Gate-Body Leakage Current		± 500	nA	V _{GS} = ± 20 V, V _{DS} = 0 V	
On Charac	teristics				· · · · · · · · · · · · · · · · · · ·	
V _{GS(th)}	Gate Threshold Voltage			V		
	IRF710-713	2.0	4.0	1	$I_{D} = 250 \ \mu A, \ V_{DS} = V_{GS}$	
	MTP2N35/2N40	2.0	4.5	1	$I_D = 1 \text{ mA}, V_{DS} = V_{GS}$	
R _{DS(on)}	Static Drain-Source On-Resistance ²			Ω	$V_{GS} = 10 V, I_{D} = 0.8 A$	
	IRF710/711		3.6	1		
	IRF712/713/MTP2N35/40		5.0	1		
V _{DS(on)}	Drain-Source On-Voltage ²		13	V	$V_{GS} = 10 V, I_D = 2.0 A$	
	MTP2N35/2N40		10	V	$V_{GS} = 10$ V, $I_D = 1.0$ A, $T_C = 100^{\circ}C$	
9fs	Forward Transconductance	0.5		S (73)	$V_{DS} = 10 V, I_D = 0.8 A$	
Dynamic C	naracteristics					
Ciss	Input Capacitance		200	pF	V _{DS} = 25 V, V _{GS} = 0 V	
Coss	Output Capacitance		50	pF	f = 1.0 MHz	
Crss	Reverse Transfer Capacitance		15	pF		
Switching (characteristics ($T_C = 25^{\circ}C$, Figures 11,	12) ³				
t _{d(on)}	Turn-On Delay Time		10	ns	$V_{DD} = 200 \text{ V}, I_D = 0.8 \text{ A}$	
tr	Rise Time		20	ns	$V_{GS} = 10 \text{ V}, \text{R}_{\text{GEN}} = 50 \Omega$ $R_{GS} = 50 \Omega$	
· t _{d(off)}	Turn-Off Delay Time		10	ns		
t _f	Fall Time		15	ns		
Qg	Total Gate Charge		7.5	nC	$V_{GS} = 10 \text{ V}, I_D = 2.0 \text{ A}$ $V_{DD} = 200 \text{ V}$	

IRF710-713 MTP2N35/2N40

Symbol	Characteristic	Тур	Max	Unit	Test Conditions
Source-Dra	in Diode Characteristics				
V _{SD}	Diode Forward Voltage				
	IRF710/711		1.6	V	I _S = 1.5 A; V _{GS} = 0 V
	IRF712/713		1.5	V	I _S = 1.3 A; V _{GS} = 0 V
trr	Reverse Recovery Time	380		ns	$I_{S} = 1.5 \text{ A}; \text{ dI}_{S}/\text{dt} = 25 \text{ A}/\mu\text{S}$

Notes 1. $T_J = +25^{\circ}C$ to $+150^{\circ}C$ 2. Pulse test: Pulse width $\leq 80 \ \mu$ s, Duty cycle $\leq 1\%$ 3. Switching time measurements performed on LEM TR-58 test equipment.

.

Typical Performance Curves

Figure 1 Output Characteristics

Figure 2 Static Drain to Source Resistance vs Drain Current

.

Figure 4 Temperature Variation of Gate to Source Threshold Voltage

