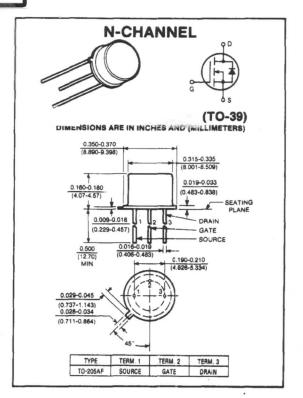
New Jersey Semi-Conductor Products, Inc.

20 STERN AVE. SPRINGFIELD, NEW JERSEY 07081 U.S.A.

IRFF212,213

1.8 AMPERES 200, 150 VOLTS RDS(ON) = 2.4 Ω TELEPHONE: (973) 376-2922

(212) 227-6005 FAX: (973) 376-8960


POWER-MOS FET

FIELD EFFECT POWER TRANSISTOR

This design has been optimized to give superior performance in most switching applications including: switching power supplies, inverters, converters and solenoid/relay drivers. Also, the extended safe operating area with good linear transfer characteristics makes it well suited for many linear applications such as audio amplifiers and servo motors.

Features

- Polysilicon gate Improved stability and reliability
- No secondary breakdown Excellent ruggedness
- Ultra-fast switching Independent of temperature
- Voltage controlled High transconductance
- Low input capacitance Reduced drive requirement
- Excellent thermal stability Ease of paralleling

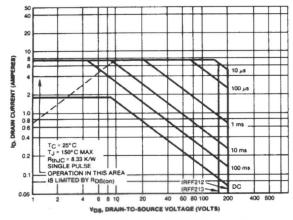
maximum ratings (T_C = 25°C) (unless otherwise specified)

RATING	SYMBOL	IRFF212	IRFF213	UNITS	
Drain-Source Voltage	V _{DSS}	200	150	Volts	
Drain-Gate Voltage, $R_{GS} = 1M\Omega$	VDGR	200	150	Volts	
Continuous Drain Current @ T _C = 25°C	ID	1.8	1.8	А	
Pulsed Drain Current(1)	IDM	7.5	7.5	A	
Gate-Source Voltage	V _{GS}	±20	±20	Volts	
Total Power Dissipation @ T _C = 25°C Derate Above 25°C	PD	15 .12	15 .12	Watts W/°C	
Operating and Storage Junction Temperature Range	T _J , T _{STG}	-55 to 150	-55 to 150	°C	

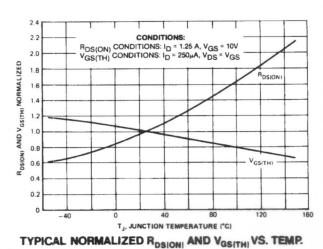
thermal characteristics

Thermal Resistance, Junction to Case	$R_{\theta JC}$	8.33	8.33	°C/W
Thermal Resistance, Junction to Ambient	$R_{\theta JA}$	175	175	°C/W
Maximum Lead Temperature for Soldering Purposes: 1/16" from Case for 10 Seconds	TL	260	260	°C

(1) Repetitive Rating: Pulse width limited by max. junction temperature.


NJ Semi-Conductors reserves the right to change test conditions, parameter limits and package dimensions without notice. Information furnished by NJ Semi-Conductors is believed to be both accurate and reliable at the time of going to press. However, NJ Semi-Conductors assumes no responsibility for any errors or omissions discovered in its use. NJ Semi-Conductors encourages customers to verify that datasheets are current before placing orders.

Quality Semi-Conductors


electrical characteristics (T_C = 25°C) (unless otherwise specified)

CHARACTERISTIC		SYMBOL	MIN	TYP	MAX	UNIT
off characteristics						
Drain-Source Breakdown Voltage (V _{GS} = 0V, I _D = 250 μA) IRFF212		BVDSS	200 150	_	_	Volts
Zero Gate Voltage Drain Current (VDS = Max Rating, VGS = 0V, TC = 25°C) (VDS = Max Rating, × 0.8, VGS = 0V, TC = 125°C)		IDSS		_	250 1000	μΑ
Gate-Source Leakage Current (VGS = ±20V)		I _{GSS}	_	_	±100	nA
on characteristics*						
Gate Threshold Voltage $T_C = 25^{\circ}C$ $(V_{DS} = V_{GS}, I_D = 250 \mu A)$		V _{GS(TH)}	2.0	_	4.0	Volts
On-State Drain Current (VGS = 10V, VDS = 10V)		I _{D(ON)}	1.8	_	_	A
Static Drain-Source On-State Resistance (VGS = 10V, ID = 1.25A)		R _{DS(ON)}	_	_	2.4	Ohms
Forward Transconductance (V _{DS} = 10V, I _D = 1.25A)		9fs	0.72	_	_	mhos
lynamic characteristic	5					
Input Capacitance	V _{GS} = 0V	Ciss	_	_	150	pF
Output Capacitance	V _{DS} = 25V	Coss			80	pF
Reverse Transfer Capacitance	f = 1 MHz	C _{rss}			25	pF
witching characteristi	cs*					
Turn-on Delay Time	V _{DS} = 90V	t _{d(on)}		8	_	ns
Rise Time	I _D = 1.25A, V _{GS} = 15V	t _r	_	15	_	ns
				10	_	ns
Turn-off Delay Time	$R_{GEN} = 50\Omega$, $R_{GS} = 12.5\Omega$	td(off)	_	1 .0	1	
Turn-off Delay Time Fall Time		t _f (off)		8	_	ns
Fall Time	(R _{GS} (EQUIV.) = 10Ω)	t _f			_	ns
Fall Time	(R _{GS} (EQUIV.) = 10Ω)	t _f			1.8	ns
Fall Time source-drain diode rati	(R _{GS} (EQUIV.) = 10Ω)	stics*		8	1.8 7.5	
Fall Time Source-drain diode rati Continuous Source Current	(R _{GS (EQUIV.)} = 10Ω) ngs and characteri	stics*	_	8		A

MAXIMUM SAFE OPERATING AREA

