J108-J110
 N-Channel JFET Switch

FEATURES

- Low Cost
- Automated Insertion Package
- Low Insertion Loss
- No Offset or Error Voltages Generated by Closed Switch

Purely Resistive
High Isolation Resistance from Driver

- Fast Switching
- Low Noise
PIN CONFIGURATION

APPLICATIONS
 - Analog Switches
 - Choppers
 - Commutators
 - Low-Noise Audio Amplifiers

ABSOLUTE MAXIMUM RATINGS
($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise specified)
Gate-Drain or Gate-Source Voltage 25 V
Gate Current . 50mA
Storage Temperature Range $-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Operating Temperature Range $-55^{\circ} \mathrm{C}$ to $+135^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10sec) $+300^{\circ} \mathrm{C}$
Power Dissipation . 360 mW
Derate above $25^{\circ} \mathrm{C}$. $3.3 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
NOTE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS $\left(T_{A}=25^{\circ} \mathrm{C}\right.$ unless otherwise specified)

SYMBOL	PARAMETER	108			109			110			UNITS	TEST CONDITIONS				
		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX						
IGSS	Gate Reverse Current (Note 1)			-3			-3			-3	nA	$V_{D S}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=-15 \mathrm{~V}$				
$\mathrm{V}_{\text {GS }}$ (off)	Gate-Source Cutoff Voltage	-3		-10	-2		-6	-0.5		-4	V					
BVGSS	Gate-Source Breakdown Voltage	-25			-25			-25				$V_{D S}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{G}}=-1 \mu \mathrm{~A}$				
loss	Drain Saturation Current (Note 2)	80			40			10			mA	$V_{D S}=15 \mathrm{~V}, \mathrm{~V}_{G S}=0 \mathrm{~V}$				
$l_{\text {(}}$ (ff)	Drain Cutoff Current (Note 1)			3			3			3	nA	$V_{D S}=5 \mathrm{~V}, \mathrm{~V}_{G S}=-10 \mathrm{~V}$				
ros(on)	Drain-Source ON Resistance			8			12			18	Ω	$\mathrm{V}_{\mathrm{DS}} \leq 0.1 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}$				
$\mathrm{C}_{\text {dg(off) }}$	Drain-Gate OFF Capacitance			15			15			15	pF	$\begin{aligned} & V_{D S}=0, \\ & V_{G S}=-10 \mathrm{~V} \\ & \text { (Note 3) } \end{aligned}$	$f=1 \mathrm{MHz}$			
$\mathrm{C}_{\text {sgoff }}$	Source-Gate OFF Capacitance			15			15			15						
$\mathrm{C}_{\mathrm{dg} \text { (on) }}$ $+\mathrm{C}_{\mathrm{sg}(\mathrm{on})}$	Drain-Gate Plus Source-Gate ON Capacitance			85			85			85		$\begin{aligned} & V_{D S}=V_{G S}=0 \\ & (\text { Note 3) } \end{aligned}$				
$\mathrm{t}_{\mathrm{d} \text { (on) }}$	Turn On Delay Time		4			4			4		ns	Switching Time Test Conditions (Note 3)				
tr_{r}	Rise Time		1			1			1							
$t_{d \text { (off) }}$	Turn OFF Delay Time		6			6			6			Vor $\begin{aligned} & \text { J107 } \\ & 1.5 V\end{aligned}$	J 109 15 V	$J 110$ 15 V		
t_{f}	Fall Time		30			30			30			$\begin{aligned} & \mathrm{V}_{\mathrm{GS} \text { (off) }}-12 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}} \quad 150 \Omega \end{aligned}$	$\begin{gathered} -7 V \\ 150 \Omega \end{gathered}$	$\begin{gathered} -5 \dot{V} \\ 150 \Omega \end{gathered}$		

NOTES: 1. Approximately doubles for every $10^{\circ} \mathrm{C}$ increase in T_{A}.
2. Pulse test duration $=300 \mu \mathrm{~s}$; duty cycle $\leq 3 \%$.
3. For design reference only, not 100% tested.

NJ Semi-Conductors reserves the right to change test conditions, parameters limits and package dimensions without notice information furnished by NJ Semi-Conductors is believed to be both accurate and reliable at the time of going to press. However NJ Semi-Conductors assumes no responsibility for any errors or omissions discovered in its use. NJ Semi-Conductors encourages customers to verify that datasheets are current before placing orders.
Quality Semi-Conductors

