New Jersey Semi-Conductor Products, Inc.

20 STERN AVE. SPRINGFIELD, NEW JERSEY 07081 U.S.A. TELEPHONE: (973) 376-2922

(212) 227-6005

FAX: (973) 376-8960

N-channel silicon field-effect transistors

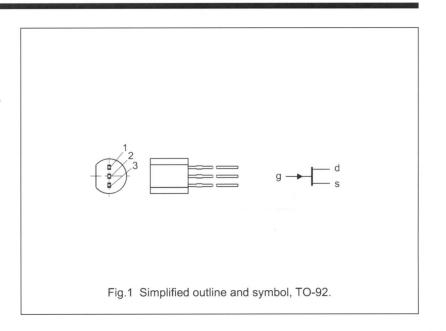
J111; J112; J113

DESCRIPTION

Symmetrical silicon n-channel junction FETs in plastic TO-92 envelopes. They are intended for applications such as analog switches, choppers, commutators etc.

FEATURES

- · High speed switching
- Interchangeability of drain and source connections
- Low R_{DS on} at zero gate voltage


PINNING

1 = gate

2 = source

3 = drain

Note: Drain and source are interchangeable.

QUICK REFERENCE DATA

			J111	J112	J113	
Drain-source voltage	$\pm V_{DS}$	max.	40	40	40	_ V
Drain current						
$V_{DS} = 15 \text{ V}; V_{GS} = 0$	I _{DSS}	min.	20	5	2	mA
Total power dissipation						
up to T _{amb} = 50 °C	P_{tot}	max.	400	400	400	mW
Gate-source cut-off voltage			0		0.5	
$V_{DS} = 5 \text{ V}; I_{D} = 1 \mu \text{A}$	$-V_{GS off}$	min.	3	1	0.5	V
	33 011	max.	10	5	3	V
Drain-source on-state resistance						
$V_{DS} = 0.1 V; V_{GS} = 0$	R _{DS on}	max.	30	50	100	Ω

NJ Semi-Conductors reserves the right to change test conditions, parameter limits and package dimensions without notice. Information furnished by NJ Semi-Conductors is believed to be both accurate and reliable at the time of going to press. However, NJ Semi-Conductors assumes no responsibility for any errors or omissions discovered in its use. NJ Semi-Conductors encourages customers to verify that datasheets are current before placing orders.

N-channel silicon field-effect transistors

J111; J112; J113

RAT	IN	GS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

$\pm V_{DS}$	max.	40	V
$-V_{GSO}$	max.	40	V
$-V_{GDO}$	max.	40	V
I_{G}	max.	50	mA
P_{tot}	max.	400	mW
T _{stg}		-65 to + 150	°C
T_{j}	max.	150	°C
	-V _{GSO} -V _{GDO} I _G	$\begin{array}{lll} -V_{GSO} & \text{max.} \\ -V_{GDO} & \text{max.} \\ I_G & \text{max.} \\ \end{array}$ $P_{tot} & \text{max.} \\ T_{stg} & \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

THERMAL RESISTANCE

From junction to ambient in free air

 $R_{th j-a} =$

250 K/W

STATIC CHARACTERISTICS

T_j = 25 °C unless otherwise specified

			J111	J112	J113	
Gate reverse current						_
$-V_{GS} = 15 \text{ V}; V_{DS} = 0$	$-I_{GSS}$	max.	1	1	1	nA
Drain cut-off current						
V_{DS} = 5 V; $-V_{GS}$ = 10 V	$-I_{DSX}$	max.	1	1	1	nA
Drain saturation current						
$V_{DS} = 15 \text{ V}; V_{GS} = 0$	I _{DSS}	min.	20	5	2	mA
Gate-source breakdown voltage						
$-I_G = 1 \mu A; V_{DS} = 0$	$-V_{(BR)GSS}$	min.	40	40	40	V
Gate-source cut-off voltage						
V_{DS} = 5 V; I_D = 1 μA	$-V_{GS\ off}$	min.	3	1	0.5	V
		max.	10	5	3	V
Drain-source on-state resistance						
$V_{DS} = 0.1 V; V_{GS} = 0$	R_{DSon}	max.	30	50	100	Ω