New Jersey Semi-Conductor Products, Inc.

20 STERN AVE. SPRINGFIELD, NEW JERSEY 07081 U.S.A.

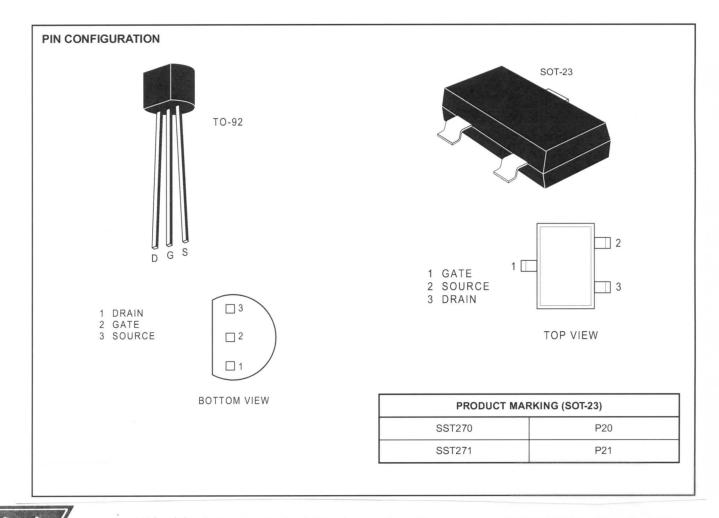
J270 – J271 / SST270 – SST271

FEATURES

Surface Mount

APPLICATIONS

P-Channel Amplifier


TELEPHONE: (973) 376-2922 (212) 227-6005 FAX: (973) 376-8960

DESCRIPTION

The J270/SST270 Series is an all-purpose amplifier for designs requiring P-channel operation. These devices feature high gain, low noise and tight $V_{GS(OFF)}$ limits for simple circuit design. They are available in low-cost SOT-23 and TO-92 packages and are fully compatible with automatic insertion techniques.

ORDERING INFORMATION

Part	Package	Temperature Range
J270-271	Plastic TO-92	-55°C to +135°C
SST270-271	Plastic SOT-23	-55°C to +135°C

NJ Semi-Conductors reserves the right to change test conditions, parameter limits and package dimensions without notice. Information furnished by NJ Semi-Conductors is believed to be both accurate and reliable at the time of going to press. However, NJ Semi-Conductors assumes no responsibility for any errors or omissions discovered in its use. NJ Semi-Conductors encourages customers to verify that datasheets are current before placing orders.

Quality Semi-Conductors

J270 - J271 / SST270 - SST271

ABSOLUTE MAXIMUM RATINGS ($T_A = 25^{\circ}C$ unless otherwise noted)

PARAMETERS/TEST CONDITIONS	SYMBOL	LIMIT	UNIT	
Gate-Drain Voltage	V _{GD}	30	V	
Gate-Source Voltage	Vgs	30	V	
Gate Current	IG	-50	mA	
Power Dissipation	PD	350	mW	
Power Derating		2.8	mW/ °C	
Operating Junction Temperature	TJ	-55 to 150	°C	
Storage Temperature	T _{stg}	-55 to 150	°C	
Lead Temperature (1/16" from case for 10 seconds)	TL	300	°C	

ELECTRICAL CHARACTERISTICS ($T_A = 25^{\circ}C$ unless otherwise noted)

avupo.	PARAMETER	TYP ¹	270		271		UNIT	TEST CONDITIONS	
SYMBOL	PARAMETER	ITP	MIN	MAX	MIN	MAX	UNIT	TEST CONDITIONS	
STATIC									
V(BR)GSS	Gate-Source Breakdown Voltage	45	30		30		V	$I_G = 1\mu A$, $V_{DS} = 0V$	
V _{GS(OFF})	Gate-Source Cutoff Voltage		0.5	2.0	1.5	4.5		V _{DS} = -15V, I _D = -1nA	
IDSS	Saturation Drain Current ²		-2	-15	-6	-50	mA	V _{DS} = -15V, V _{GS} = 0V	
IGSS Gate Reverse	Cata Royaraa Current	10		200		200	pА	V _{GS} = 20V, V _{DS} = 0V	
	Gale Reverse Current	5					nA	$T_A = 125^{\circ}C$	
IG	Gate Operating Current	10					pА	V _{DG} = -15V, I _D = -1mA	
VGS(F)	Gate-Source Forward Voltage	-0.7					V	$I_G = -1 \text{mA}, V_{DS} = 0 \text{V}$	
DYNAMIC									
g fs	Common-Source Forward Transconductance		6	15	8	18	mS	V _{DS} = -15V, V _{GS} = 0V f = 1kHz	
gos	Common-Source Output Conductance			200		500	μS		
Ciss	Common-Source Input Capacitance	20						V _{DS} = -15V, V _{GS} = 0V	
Crss	Common-Source Reverse Transfer Capacitance	4					pF	f = 1MHz	
en	Equivalent Input Noise Voltage	20					$\frac{nV}{\sqrt{Hz}}$	V _{DS} = -10V, V _{GS} = 0V f = 1kHz	

NOTES: 1. For design aid only, not subject to production testing. 2. Pulse test; PW = 300μ s, duty cycle $\leq 3\%$.