New Jersey Semi-Conductor Products, Inc.

20 STERN AVE. SPRINGFIELD, NEW JERSEY 07081 U.S.A.

Triacs Silicon Bidirectional Thyristors

... designed primarily for full-wave ac control applications, such as solid-state relays, motor controls, heating controls and power supplies; or wherever full-wave silicon gate controlled solid-state devices are needed. Triac type thyristors switch from a blocking to a conducting state for either polarity of applied anode voltage with positive or negative gate triggering.

- Blocking Voltage to 800 Volts
- All Diffused and Glass Passivated Junctions for Greater Parameter Uniformity and Stability
- Small, Rugged, Thermowatt Construction for Low Thermal Resistance, High Heat Dissipation and Durability
- Gate Triggering Guaranteed in Three Modes (MAC320 Series) or Four Modes (MAC320A Series)

MAXIMUM RATINGS (T_C = 25°C unless otherwise noted.)

Rating	Symbol	Value	Unit
Peak Repetitive Off-State Voltage ⁽¹⁾ (T _J ≃ –40 to +125°C, 1/2 Sine Wave 50 to 60 Hz, Gate Open)	VDRM		Volts
MAC320-4 MAC320A4		200 400	
MAC320-6, MAC320A6		600	
MAC320-8, MAC320A8 MAC320-10, MAC320A10		800	
Peak Gate Voltage	VGM	10	Volts
On-State Current RMS (T _C = +75°C) (Full Cycle, Sine Wave, 50 to 60 Hz)	^I T(RMS)	20	Amp
Peak Surge Current (One Full Cycle, 60 Hz, T _C = +75°C) preceded and followed by rated current	ITSM	150	Amp
Peak Gate Power (T _C = +75°C, Pulse Width = $2 \mu s$)	PGM	20	Watts
Average Gate Power (T _C = +75°C, t = 8.3 ms)	PG(AV)	0.5	Watt
Peak Gate Current	IGM	2	Amp
Operating Junction Temperature Range	ТJ	-40 to +125	°C
Storage Temperature Range	T _{stg}	-40 to +150	°C
THERMAL CHARACTERISTICS		-	

Characteristic	Symbol	Max	Unit	
Thermal Resistance, Junction to Case	R _{θJC}	1.8	°C/W	

1. VDRM for all types can be applied on a continuous basis. Blocking voltages shall not be tested with a constant current source such that the voltage ratings of the devices are exceeded.

NJ Semi-Conductors reserves the right to change test conditions, parameter limits and package dimensions without notice. Information furnished by NJ Semi-Conductors is believed to be both accurate and reliable at the time of going to press. However, NJ Semi-Conductors assumes no responsibility for any errors or omissions discovered in its use. NJ Semi-Conductors encourages customers to verify that datasheets are current before placing orders.

TRIACs 20 AMPERES RMS 200 thru 800 VOLTS

MAC320 Series MAC320A Series

ELECTRICAL CHARACTERISTICS (T_C = 25° C unless otherwise noted.)

Characteristic	Symbol	Min	Тур	Max	Unit
Peak Blocking Current $T_J = 25^{\circ}C$ (VD Rated VDRM, Gate Open) $T_J = +125^{\circ}C$ $T_J = +125^{\circ}C$	^I DRM			10 2	μA mA
Peak On-State Voltage (Either Direction) (I _{TM} = 28 A Peak; Pulse Width = 1 to 2 ms, Duty Cycle ≤ 2%)	VTM	-	1.4	1.7	Volts
Gate Trigger Current (Continuous dc) (Main Terminal Voltage = 12 Vdc, RL = 100 Ohms) MT2 (+), G(+); MT2 (+), G(-); MT2 (-), G(-) MT2 (-), G(+) "A" SUFFIX ONLY	IGT		-	50 75	mA
Gate Trigger Voltage (Continuous dc) (Main Terminal Voltage = 12 Vdc, RL = 100 Ohms) MT2 (+), G(+); MT2 (+), G(-); MT2 (-), G(-) MT2 (-), G(+) "A" SUFFIX ONLY (Main Terminal Voltage = Rated V _{DRM} , RL = 10 k Ω , T _J =+110°C) MT2 (+), G(+); MT2 (-), G(-); MT2 (+), G(-); MT2 (-), G(+) "A" SUFFIX ONLY	VGT	 0.2 0.2	0.9 1.4	2 2.5 —	Volts
Holding Current (Either Direction) (Main Terminal Voltage = 12 Vdc, Gate Open, Initiating Current = 200 mA)	Ч	-	6	40	mA
Turn-On Time (V _D = Rated V _{DRM} , I _{TM} = 28 A, I _{GT} = 120 mA, Rise Time = 0.1 μ s, Pulse Width = 2 μ s)	tgt	-	1.5	-	μs
Critical Rate of Rise of Commutation Voltage (V _D = Rated V _{DRM} , I _{TM} = 28 A, Commutating di/dt = 10 A/ms, Gate Unenergized, T _C = +75°C)	dv/dt(C)	-	5	_	V/μs

FIGURE 2 - ON-STATE POWER DISSIPATION

