New Jersey Semi-Conductor Products, Inc.

20 STERN AVE. SPRINGFIELD, NEW JERSEY 07081 U.S.A. TELEPHONE: (973) 376-2922 (212) 227-6005 FAX: (973) 376-8960

MJ802

High-Power NPN Silicon Transistor

This transistor is for use as an output device in complementary audio amplifiers to 100–Watts music power per channel.

Features

- High DC Current Gain $-h_{FE} = 25-100$ @ I_C = 7.5 A
- Excellent Safe Operating Area
- Complement to the PNP MJ4502

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	V _{CER}	100	Vdc
Collector-Base Voltage	V _{CB}	100	Vdc
Collector-Emitter Voltage	V _{CEO}	90	Vdc
Emitter-Base Voltage	V _{EB}	4.0	Vdc
Collector Current	lc	30	Adc
Base Current	Ι _Β	7.5	Adc
Total Device Dissipation @ T _C = 25°C Derate above 25°C	PD	200 1.14	W W/°C
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-65 to +200	°C

THERMAL CHARACTERISTICS

Characteristics	Symbol	Max	Unit
Thermal Resistance, Junction-to-Case	θյς	0.875	°C/W

Maximum ratings are those values beyond which device damage can occur. Maximum ratings applied to the device are individual stress limit values (not normal operating conditions) and are not valid simultaneously. If these limits are exceeded, device functional operation is not implied, damage may occur and reliability may be affected.

30 AMPERE POWER TRANSISTOR NPN SILICON 100 VOLTS - 200 WATTS

NJ Semi-Conductors reserves the right to change test conditions, parameter limits and package dimensions without notice. Information furnished by NJ Semi-Conductors is believed to be both accurate and reliable at the time of going to press. However, NJ Semi-Conductors assumes no responsibility for any errors or omissions discovered in its use. NJ Semi-Conductors encourages customers to verify that datasheets are current before placing orders.

Quality Semi-Conductors

MJ802

ELECTRICAL CHARACTERISTICS (T_C = 25°C unless otherwise noted)

Characteristic	Symbol	Min	Max	Unit
OFF CHARACTERISTICS	L			
Collector-Emitter Breakdown Voltage ($I_c = 200 \text{ mAdc}, R_{BE} = 100 \Omega$)	BV _{CER}	100	-	Vdc
Collector-Emitter Sustaining Voltage (Note 1) (I _C = 200 mAdc)	V _{CEO(sus)}	90	-	Vdc
Collector-Base Cutoff Current $(V_{CB} = 100 \text{ Vdc}, I_E = 0)$ $(V_{CB} = 100 \text{ Vdc}, I_E = 0, T_C = 150^{\circ}\text{C})$	Сво	- -	1.0 5.0	mAdc
Emitter-Base Cutoff Current (V _{BE} = 4.0 Vdc, I _C = 0)	I _{EBO}	-	1.0	mAdc
ON CHARACTERISTICS ⁽¹⁾			-	
DC Current Gain (Note 1) (I _C = 7.5 Adc, V _{CE} = 2.0 Vdc)	h _{FE}	25	100	-
Base-Emitter "On" Voltage (I _C = 7.5 Adc, V _{CE} = 2.0 Vdc)	V _{BE(on)}	-	1.3	Vdc
Collector-Emitter Saturation Voltage ($I_c = 7.5 \text{ Adc}, I_B = 0.75 \text{ Adc}$)	V _{CE(sat)}	-	0.8	Vdc
Base-Emitter Saturation Voltage (I _C = 7.5 Adc, I _B = 0.75 Adc)	V _{BE(sat)}	-	1.3	Vdc
DYNAMIC CHARACTERISTICS			•	•
Current Gain – Bandwidth Product (I _C = 1.0 Adc, V _{CE} = 10 Vdc, f = 1.0 MHz)	fT	2.0	-	MHz

1. Pulse Test: Pulse Width \leq 300 µs, Duty Cycle \leq 2.0%.

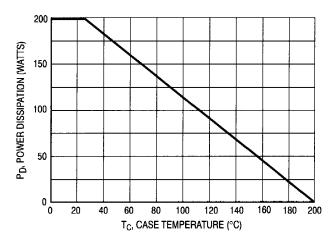


Figure 1. Power-Temperature Derating Curve