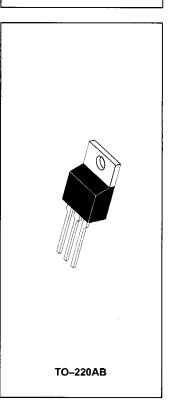
20 STERN AVE.

SPRINGFIELD, NEW JERSEY 07081 U.S.A.

Bipolar Power PNP Low Dropout Regulator Transistor

The MJE1123 is an applications specific device designed to provide low-dropout linear regulation for switching-regulator post regulators, battery powered systems and other applications. The MJE1123 is fully specified in the saturation region and exhibits the following main features:


- High Gain Limits Base–Drive Losses to only 1–2% of Circuit Output Current
- Gain is 100 Minimum at I_C = 1.0 Amp, V_{CE} = 7.0 Volts
- Excellent Saturation Voltage Characteristic, 0.2 Volts Maximum at 1.0 Amp

MAXIMUM RATINGS (T_C = 25°C Unless Otherwise Noted.)

Rating	Symbol	Value	Ųnit
Collector-Emitter Sustaining Voltage	VCEO	40	Vdc
Collector-Base Voltage	V _{CB}	50	Vdc
Emitter-Base Voltage	VEB	5.0	Vdc
Collector Current — Continuous — Peak	IС IСМ	4.0 8.0	Adc
Base Current — Continuous	IВ	4.0	Adc
Total Power Dissipation @ T _C = 25°C Derate above 25°C	PD	75 0.6	Watts W/°C
Operating and Storage Temperature	Тј, Т _{stg}	- 65 to +150	°C

MJE1123

PNP LOW DROPOUT TRANSISTOR 4.0 AMPERES 40 VOLTS

THERMAL CHARACTERISTICS

Thermal Resistance — Junction to Case	R _{θJC}	1.67	°C/W
— Junction to Ambient	R _{θJA}	70	
Maximum Lead Temperature for Soldering Purposes: 1/8" from Case for 5 seconds	ΤL	275	°C

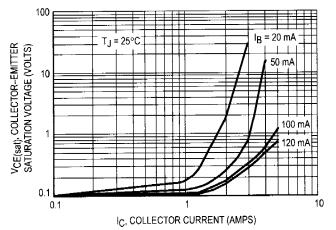
ELECTRICAL CHARACTERISTICS (T_C = 25°C Unless Otherwise Noted)

Characteristic	Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS*					
Collector-Emitter Sustaining Voltage (I _C = 1.0 mA, I = 0)	V _{CEO(sus)}	40	65	—	Vdc
Emitter–Base Voltage (I _E = 100 μA)	V _{EBO}	7.0	11	—	Vdc
Collector Cutoff Current $(V_{CE} = 7.0 \text{ Vdc}, I_B = 0)$ $(V_{CE} = 20 \text{ Vdc}, I_B = 0)$	ICEO	_		100 250	µAdc
DN CHARACTERISTICS*					
Collector-Emitter Saturation Voltage ($I_{C} = 1.0 \text{ Adc}, I_{B} = 20 \text{ mAdc}$) ($I_{C} = 1.0 \text{ Adc}, I_{B} = 50 \text{ mAdc}$) ($I_{C} = 1.0 \text{ Adc}, I_{B} = 120 \text{ mAdc}$) ($I_{C} = 2.0 \text{ Adc}, I_{B} = 50 \text{ mAdc}$) ($I_{C} = 2.0 \text{ Adc}, I_{B} = 120 \text{ mAdc}$) ($I_{C} = 4.0 \text{ Adc}, I_{B} = 120 \text{ mAdc}$)	VCE(sat)		0.16 0.13 0.10 0.25 0.20 0.45	0.30 0.25 0.20 0.40 0.35 0.75	Vdc

* Indicates Pulse Test: Pulse Width = 300 µs max, Duty Cycle = 2%.

NJ Semi-Conductors reserves the right to change test conditions, parameter limits and package dimensions without notice. Information furnished by NJ Semi-Conductors is believed to be both accurate and reliable at the time of going to press. However, NJ Semi-Conductors assumes no responsibility for any errors or omissions discovered in its use. NJ Semi-Conductors encourages customers to verify that datasheets are current before placing orders.

Quality Semi-Conductors


MJE1123

ELECTRICAL CHARACTERISTICS — continued (T_C = 25°C Unless Otherwise Noted)

Characteristic	Symbol	Min	Тур	Max	Unit
DN CHARACTERISTICS* (continued)					
Base-Emitter Saturation Voltage $(I_C = 1.0 \text{ Adc}, I_B = 20 \text{ mAdc})$ $(I_C = 2.0 \text{ Adc}, I_B = 50 \text{ mAdc})$ $(I_C = 4.0 \text{ Adc}, I_B = 120 \text{ mAdc})$	VBE(sat)		0.77 0.87 1.00	0.95 1.20 1.40	Vdc
DC Current Gain ($I_C = 1.0 \text{ Adc}, V_{CE} = 7.0 \text{ Vdc}$) ($I_C = 1.0 \text{ Adc}, V_{CE} = 10 \text{ Vdc}$) ($I_C = 2.0 \text{ Adc}, V_{CE} = 7.0 \text{ Vdc}$) ($I_C = 2.0 \text{ Adc}, V_{CE} = 10 \text{ Vdc}$) ($I_C = 4.0 \text{ Adc}, V_{CE} = 7.0 \text{ Vdc}$) ($I_C = 4.0 \text{ Adc}, V_{CE} = 10 \text{ Vdc}$)	hFE	100 100 75 80 45 45	170 180 120 140 75 79	225 225 170 180 100 100	
Base-Emitter On Voltage $(I_{C} = 1.0 \text{ Adc}, V_{CE} = 1.0 \text{ Vdc})$ $(I_{C} = 2.0 \text{ Adc}, V_{CE} = 1.0 \text{ Vdc})$ $(I_{C} = 4.0 \text{ Adc}, V_{CE} = 1.0 \text{ Vdc})$	VBE(on)	_ _ _	0.75 0.84 0.90	0.90 1.00 1.20	Vdc
DYNAMIC CHARACTERISTICS				·	
Current–Gain — Bandwidth Product (I _C = 1.0 Adc, V _{CE} = 4.0 Vdc, f = 1.0 MHz)	fτ	5.0	11.5	_	MHz

1

* Indicates Pulse Test: Pulse Width = 300 µs max, Duty Cycle = 2%.

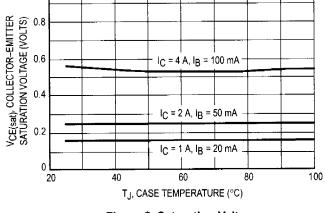


Figure 1. Saturation Voltage versus Collector Current as a Function of Base Drive

Figure 2. Saturation Voltage versus Temperature