New Jersey Semi-Conductor Products, Inc.

20 STERN AVE.
SPRINGFIELD, NEW JERSEY 07081
U.S.A.

NPN Silicon Power Darlington Transistors

The MJE5740, 41, 42 Darlington transistors are designed for high–voltage power switching in inductive circuits. They are particularly suited for operation in applications such as:

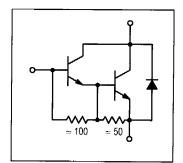
- Small Engine Ignition
- Switching Regulators
- Inverters
- · Solenoid and Relay Drivers
- Motor Controls

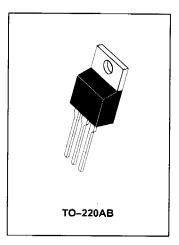
MAXIMUM RATINGS

Rating	Symbol	MJE5740	MJE5741	MJE5742	Unit			
Collector–Emitter Voltage	VCEO(sus)	300	350	400	Vdc			
Collector-Emitter Voltage	VCEV	600	700	800	Vdc			
Emitter Base Voltage	VEB		8		Vdc			
Collector Current — Continuous — Peak (1)	I _C	8 16			· · · · · · · · · · · · · · · · · · ·			Adc
Base Current — Continuous — Peak (1)	I _B	2.5 5			Adc			
Total Power Dissipation @ T _A = 25°C Derate above 25°C	PD	2 16			Watts mW/°C			
Total Power Dissipation @ T _C = 25°C Derate above 25°C	PD	80 640				Watts mW/°C		
Operating and Storage Junction Temperature Range	TJ, T _{stg}	-65 to +150		°C				

(1) Pulse Test: Pulse Width = 5 ms, Duty Cycle = 10%.

THERMAL CHARACTERISTICS


Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case	R _{0JC}	1.56	°C/W
Thermal Resistance, Junction to Ambient	$R_{\theta JA}$	62.5	°C/W
Maximum Lead Temperature for Soldering Purposes: 1/8" from Case for 5 Seconds	TL	275	°C


ELECTRICAL CHARACTERISTICS (T_C = 25°C unless otherwise noted)

MJE5740 MJE5741* MJE5742*

*Motorola Preferred Device

POWER DARLINGTON TRANSISTORS 8 AMPERES 300, 350, 400 VOLTS 80 WATTS

Characteristic		Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS (2)				 -	·	
Collector–Emitter Sustaining Voltage (I _C = 50 mA, I _B = 0)	MJE5740 MJE5741 MJE5742	VCEO(sus)	300 350 400	_ _ _		Vdc
Collector Cutoff Current (V _{CEV} = Rated Value, V _{BE(off)} = 1.5 Vdc) (V _{CEV} = Rated Value, V _{BE(off)} = 1.5 Vdc, T _C = 100°C)		ICEV			1 5	mAdc
Emitter Cutoff Current (V _{EB} = 8 Vdc, I _C = 0)		^I EBO	_	_	75	mAdc

SECOND BREAKDOWN

Second Breakdown Collector Current with Base Forward Biased	IS/b	See Figure 6
Clamped Inductive SOA with Base Reverse Biased	RBSOA	See Figure 7

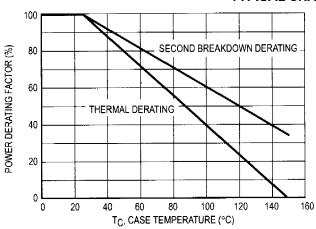
(2) Pulse Test: Pulse Width = 300 μs, Duty Cycle = 2%.

(continued)

NJ Semi-Conductors reserves the right to change test conditions, parameter limits and package dimensions without notice. Information furnished by NJ Semi-Conductors is believed to be both accurate and reliable at the time of going to press. However, NJ Semi-Conductors assumes no responsibility for any errors or omissions discovered in its use. NJ Semi-Conductors encourages customers to verify that datasheets are current before placing orders.

MJE5740 MJE5741 MJE5742

ELECTRICAL CHARACTERISTICS — **continued** (T_C = 25°C unless otherwise noted)


Characteristic	Symbol	Min	Тур	Max	Unit
ON CHARACTERISTICS (1)					
DC Current Gain (I _C = 0.5 Adc, V _{CE} = 5 Vdc) (I _C = 4 Adc, V _{CE} = 5 Vdc)	hFE	50 200	100 400	_	_
Collector–Emitter Saturation Voltage (I _C = 4 Adc, I _B = 0.2 Adc) (I _C = 8 Adc, I _B = 0.4 Adc) (I _C = 4 Adc, I _B = 0.2 Adc, T _C = 100°C)	VCE(sat)	=	_ _ _	2 3 2.2	Vdc
Base–Emitter Saturation Voltage (I_C = 4 Adc, I_B = 0.2 Adc) (I_C = 8 Adc, I_B = 0.4 Adc) (I_C = 4 Adc, I_B = 0.2 Adc, I_C = 100°C)	VBE(sat)	_ _ _		2.5 3.5 2.4	Vdc
Diode Forward Voltage (2) (I _F = 5 Adc)		_	_	2.5	Vdc

SWITCHING CHARACTERISTICS

Typical Resistive Load (Table 1)					
Delay Time	$(V_{CC} = 250 \text{ Vdc}, I_{C(pk)} = 6 \text{ A}$ $I_{B1} = I_{B2} = 0.25 \text{ A}, t_p = 25 \text{ μs},$ Duty Cycle ≤ 1%)	t _d		0.04	_	μs
Rise Time		t _r		0.5		μs
Storage Time		t _S		8	_	μs
Fall Time		t _f	_	2		μs
Inductive Load, Clampe	d (Table 1)					
Voltage Storage Time	(I _{C(pk)} = 6 A, V _{CE(pk)} = 250 Vdc	t _{sv}		4		μs
Crossover Time	(I _{C(pk)} = 6 A, V _{CE(pk)} = 250 Vdc I _{B1} = 0.06 A, V _{BE(off)} = 5 Vdc)	t _C	-	2		μs

- (1) Pulse Test: Pulse Width 300 μs, Duty Cycle = 2%.
- (2) The internal Collector–to–Emitter diode can eliminate the need for an external diode to clamp inductive loads. Tests have shown that the Forward Recovery Voltage (V_f) of this diode is comparable to that of typical fast recovery rectifiers.

TYPICAL CHARACTERISTICS

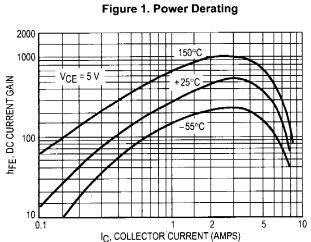


Figure 3. DC Current Gain

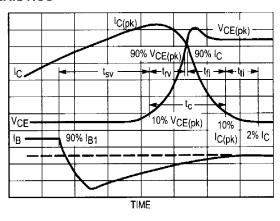


Figure 2. Inductive Switching Measurements

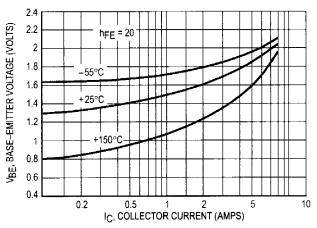


Figure 4. Base-Emitter Voltage