$\propto N_{\varepsilon u} \mathscr{I}_{\varepsilon \tau \leq \varepsilon y} S_{\varepsilon m i-C o n d u c t o r} \mathfrak{P}_{\text {products, }} \mathscr{I}_{\text {nc. }}$

Designer's ${ }^{\text {TM }}$ Data Sheet NPN Silicon Power Transistor 1 kV SWITCHMODE Series

These transistors are designed for high-voltage, high-speed, power switching in inductive circuits where fall time is critical. They are particularly suited for line-operated switchmode applications.
Typical Applications: Features:

- Switching Regulators
- Inverters
- Solenoids
- Relay Drivers
- Motor Controls
- Deflection Circuits
- Collector-Emitter Voltage - VCEV $=1000 \mathrm{Vdc}$
- Fast Turn-Off Times 80 ns Inductive Fall Time - $100^{\circ} \mathrm{C}$ (Typ) 120 ns Inductive Crossover Time - $100^{\circ} \mathrm{C}$ (Typ) 800 ns Inductive Storage Time - $100^{\circ} \mathrm{C}$ (Typ)
- $100^{\circ} \mathrm{C}$ Performance Specified for:

Reverse-Biased SOA with Inductive Load Switching Times with Inductive Loads Saturation Voltages Leakage Currents

- Extended FBSOA Rating Using Ultra-fast Rectifiers
- Extremely High RBSOA Capability

MAXIMUM RATINGS

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case	$\mathrm{R}_{\text {日JC }}$	1	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Lead Temperature for Soldering Purposes: $1 / 8^{\prime \prime}$ from Case for 5 Seconds	T_{L}	275	${ }^{\circ} \mathrm{C}$

(1) Pulse Test: Pulse Width $=5 \mathrm{~ms}$, Duty Cycle $\leq 10 \%$.

NJ Semi-Conductors reserves the right to change test conditions, parameter limits and package dimensions without notice. Information furnished by NJ Semi-Conductors is believed to be both accurate and reliable at the time of going to press. However, NJ Semi-Conductors assumes no responsibility for any errors or omissions discovered in its use. NJ Semi-Conductors encourages customers to verify that datasheets are current before placing orders.

MJH16006A

ELECTRICAL CHARACTERISTICS $\left({ }^{T} \mathrm{C}=25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

Characteristic	Symbol	Min	Typ	Max	Unit
OFF CHARACTERISTICS(1)					
Collector-Emitter Sustaining Voltage (Table 1) $\left(I_{C}=100 \mathrm{~mA}, I_{B}=0\right)$	$\mathrm{V}_{\text {CEO(sus) }}$	500	-	-	Vdc
$\begin{aligned} & \text { Collector Cutoff Current } \\ & \left.\qquad \begin{array}{l} \text { VCEV } \\ (\mathrm{V} C E V \\ =1000 \mathrm{Vdc}, \mathrm{~V}_{\mathrm{BE}}(\text { off }) \end{array}=1.5 \mathrm{Vdc}\right) \\ & \left.\mathrm{Vdc}, \mathrm{~V}_{\mathrm{BE}(\mathrm{off})}=1.5 \mathrm{Vdc}, \mathrm{~T}_{\mathrm{C}}=100^{\circ} \mathrm{C}\right) \end{aligned}$	ICEV	-	$\begin{aligned} & 0.003 \\ & 0.020 \end{aligned}$	$\begin{gathered} 0.15 \\ 1.0 \end{gathered}$	mAdc
Collector Cutoff Current $\left(V_{C E}=1000 \mathrm{Vdc}, \mathrm{R}_{\mathrm{BE}}=50 \Omega, \mathrm{~T}_{\mathrm{C}}=100^{\circ} \mathrm{C}\right)$	ICER	-	0.020	1.0	mAdc
Emitter Cutoff Current $\left(V_{E B}=6 \mathrm{Vdc}, \mathrm{I}_{\mathrm{C}}=0\right)$	Iebo	-	0.005	0.15	mAdc

SECOND BREAKDOWN

Second Breakdown Collector Current with Base Forward Biased	IS/b	See Figure 14a or 14b
Clamped Inductive SOA with Base Reverse Biased	RBSOA	See Figure 15

ON CHARACTERISTICS(1)

$\begin{aligned} & \text { Collector-Emitter Saturation Voltage } \\ & \left(I_{C}=3 \mathrm{Adc}, I_{B}=0.6 \mathrm{Adc}\right) \\ & \left(I_{C}=5 \mathrm{Adc}, I_{B}=1 \mathrm{Adc}\right) \\ & \left(I_{C}=5 \mathrm{Adc}, I_{B}=1 \mathrm{Adc}, T_{C}=100^{\circ} \mathrm{C}\right) \end{aligned}$	$\mathrm{V}_{\text {CE }}$ (sat)	-	$\begin{aligned} & 0.35 \\ & 0.50 \\ & 0.60 \end{aligned}$	$\begin{gathered} 0.7 \\ 1 \\ 1.5 \end{gathered}$	Vdc
$\begin{aligned} & \text { Base-Emitter Saturation Voltage } \\ & \text { (IC } \left.=5 \mathrm{Adc}, \mathrm{I}_{\mathrm{B}}=1 \mathrm{Adc}\right) \\ & \left(\mathrm{I}_{\mathrm{C}}=5 \mathrm{Adc}, \mathrm{I}_{\mathrm{B}}=1 \mathrm{Adc}, \mathrm{~T} \mathrm{C}=100^{\circ} \mathrm{C}\right. \text {) } \end{aligned}$	$\mathrm{V}_{\text {BE }}$ (sat)	-	1 1	1.5 1.5	Vdc
DC Current Gain ($\mathrm{I} \mathrm{C}=8 \mathrm{Adc}, \mathrm{V}_{\mathrm{CE}}=5 \mathrm{Vdc}$)	$\mathrm{h}_{\text {FE }}$	5	8	-	-

DYNAMIC CHARACTERISTICS

Output Capacitance $\left(V_{C B}=10 \mathrm{Vdc}, \mathrm{I}_{\mathrm{E}}=0, \mathrm{f}_{\text {test }}=1 \mathrm{kHz}\right)$	C_{ob}	-	-	350	pF

SWITCHING CHARACTERISTICS

Inductive Load (Table 1)							
Storage Time	$\begin{aligned} & (\mathrm{IC}=5 \mathrm{Adc}, \\ & \mathrm{I}_{\mathrm{B} 1}=0.66 \mathrm{Adc}, \\ & \mathrm{~V}_{\mathrm{BE}}(\mathrm{off})=5 \mathrm{Vdc}, \\ & \left.\left.\mathrm{~V}_{\mathrm{CE}(\mathrm{pk})}\right)=400 \mathrm{Vdc}\right) \end{aligned}$	$\left(\mathrm{T}_{\mathrm{J}}=100^{\circ} \mathrm{C}\right)$	$\mathrm{t}_{\text {sv }}$	-	800	2000	ns
Fall Time			t_{fi}	-	80	200	
Crossover Time			t_{c}	-	120	300	
Storage Time		$\left(T_{J}=150^{\circ} \mathrm{C}\right)$	$\mathrm{t}_{\text {sv }}$	-	1000	-	
Fall Time			t_{f}	-	90	-	
Crossover Time			t_{c}	-	150	-	
Resistive Load (Table 2)							
Delay Time	$\begin{aligned} & \text { (IC }=5 \mathrm{Adc}, \\ & \mathrm{VCC}=250 \mathrm{Vdc}, \\ & \mathrm{IB} 1=0.66 \mathrm{Adc}, \\ & \mathrm{PW}=30 \mu \mathrm{~s}, \\ & \text { Duty Cycle } \leq 2 \% \text {) } \end{aligned}$	$\begin{aligned} & \left(\mathrm{I}_{\mathrm{B} 2}=1.3 \mathrm{Adc},\right. \\ & \left.\mathrm{R}_{\mathrm{B} 1}=\mathrm{R}_{\mathrm{B} 2}=4 \Omega\right) \end{aligned}$	t_{d}	-	25	100	ns
Rise Time			t_{r}	-	400	700	
Storage Time			$\mathrm{t}_{\text {s }}$	-	1400	3000	
Fall Time			t_{f}	-	175	400	
Storage Time		$\left(\mathrm{V}_{\mathrm{BE}}(\mathrm{off})=5 \mathrm{Vdc}\right)$	t_{s}	-	475	-	
Fall Time			t_{f}	-	100	-	

(1) Pulse Test: PW $=300 \mu \mathrm{~s}$, Duty Cycle $\leq 2 \%$.

