
New Jersey Semi-Conductor Products, Inc.

20 STERN AVE. SPRINGFIELD, NEW JERSEY 07081 U.S.A.

General Purpose Transistor

PNP Silicon

EMITTER

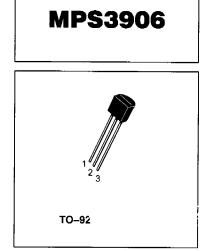
MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	VCEO	-40	Vdc
Collector-Base Voltage	∨сво	-40	Vdc
Emitter-Base Voltage	VEBO	-5.0	Vdc
Collector Current — Continuous	ΙC	-200	mAdc
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	625 5.0	mW mW/°C
Total Device Dissipation @ T _C = 25°C Derate above 25°C	PD	1.5 12	Watts mW/°C
Operating and Storage Junction Temperature Range	TJ, Tstg	-55 to +150	°C

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Ambient	R _{0JA}	200	°C/W
Thermal Resistance, Junction to Case	R _{θJC}	83.3	°C/W

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise noted)


Characteristic	Symbol	Min	Max	Unit
OFF CHARACTERISTICS				1
Collector-Emitter Breakdown Voltage ⁽¹⁾ ($I_C = -1.0$ mAdc, $I_B = 0$)	V(BR)CEO	-40	-	Vdc
Collector-Base Breakdown Voltage (I _C = -10 μAdc, I _E = 0)	V _(BR) CBO	-40		Vdc
Emitter-Base Breakdown Voltage (I _E = -10 μAdc, I _C = 0)	V _{(BR)EBO}	-5.0	-	Vdc
Collector Cutoff Current (V _{CE} = -30 Vdc, V _{EB(off)} = -3.0 Vdc)	ICEX		-50	nAdc
Base Cutoff Current (V _{CE} = -30 Vdc, V _{EB(off)} = -3.0 Vdc)	IBL		-50	nAdc

1. Pulse Test: Pulse Width = 300 µs; Duty Cycle = 2.0%.

NJ Semi-Conductors reserves the right to change test conditions, parameter limits and package dimensions without notice. Information furnished by NJ Semi-Conductors is believed to be both accurate and reliable at the time of going to press. However, NJ Semi-Conductors assumes no responsibility for any errors or omissions discovered in its use. NJ Semi-Conductors encourages customers to verify that datasheets are current before placing orders.

TELEPHONE: (973) 376-2922 (212) 227-6005 FAX: (973) 376-8960

Quality Semi-Conductors

MP\$3906

ELECTRICAL CHARACTERISTICS (T_A = 25° C unless otherwise noted) (Continued)

	Characteristic	Symbol	Min	Max	Unit
ON CHARACTERIST	rics(1)			•	
DC Current Gain ($I_C = -0.1 \text{ mAdc}$, V_C ($I_C = -1.0 \text{ mAdc}$, V_C ($I_C = -10 \text{ mAdc}$, V_C ($I_C = -50 \text{ mAdc}$, V_C ($I_C = -100 \text{ mAdc}$, V_C	_E = −1.0 Vdc) _E = −1.0 Vdc) _E = −1.0 Vdc)	hfe	60 80 100 60 30		_
Collector – Emitter Satu ($I_C = -10 \text{ mAdc}$, $I_B = (I_C = -50 \text{ mAdc}$, $I_B = -50$	= –1.0 mAdc)	V _{CE(sat)}		-0.25 -0.4	Vdc
Base – Emitter Saturation Voltage ($I_C = -10$ mAdc, $I_B = -1.0$ mAdc) ($I_C = -50$ mAdc, $I_B = -5.0$ mAdc)		V _{BE(sat)}	-0.65 	-0.85 -0.95	Vdc
SMALL-SIGNAL CH	IARACTERISTICS				
Current–Gain — Band (I _C = –10 mAdc, V _C	width Product E = –20 V, f = 100 MHz)	fT	250	—	MHz
Output Capacitance (V _{CB} = -5.0 Vdc, I _E	= 0, f = 1.0 MHz)	C _{obo}	—	4.5	pF
Input Capacitance (V _{EB} = –0.5 Vdc, I _C	= 0, f = 1.0 MHz)	C _{ibo}	_	10	pF
Input Impedance (I _C = -1.0 mAdc, V _C	; _E = −10 Vdc, f = 1.0 kHz)	h _{ie}	2.0	12	kΩ
Voltage Feedback Rati (I _C = -1.0 mAdc, V _C	o ;E = −10 Vdc, f = 1.0 kHz)	h _{re}	1.0	10	X 10−4
Small–Signal Current ((I _C = -1.0 mAdc, V _C	Gain 9⊑ =	h _{fe}	100	400	—
Output Admittance (I _C = -1.0 mAdc, V _C	;E = −10 Vdc, f = 1.0 kHz)	h _{oe}	3.0	60	μmhos
Noise Figure (I _C = –100 μAdc, V _C	; _E = –5.0 Vdc, R _S = 1.0 k Ω, f = 1.0 kHz)	NF	—	4.0	dB
SWITCHING CHARA	ACTERISTICS			-	-
Delay Time	$(V_{CC} = -3.0 \text{ Vdc}, V_{BE(off)} = +0.5 \text{ Vdc},$ $I_{C} = -10 \text{ mAdc}, I_{B1} = 1.0 \text{ mAdc})$	td		35	ns
Rise Time		tr		50	ns
Storage Time	$(V_{CC} = -3.0 \text{ Vdc}, I_{C} = -10 \text{ mAdc},$	t _s		600	ns
Fall Time	$I_{B1} = I_{B2} = -1.0 \text{ mAdc}$	tf		90	ns

1. Pulse Test: Pulse Width = 300 µs; Duty Cycle = 2.0%.