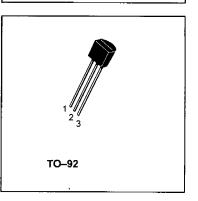
New Jersey Semi-Conductor Products, Inc.

20 STERN AVE. SPRINGFIELD, NEW JERSEY 07081 U.S.A.


Amplifier Transistors NPN Silicon

MAXIMUM RATINGS

Rating	Symbol	MPS918	MPS3563	Unit
Collector-Emitter Voltage	VCEO	15	12	Vdc
Collector-Base Voltage	VCBO	30	30	Vdc
Emitter-Base Voltage	VEBO	3.0	2.0	Vdc
Collector Current — Continuous	ιc	5	0	mAdc
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	350 2.8		mW mW/°C
Total Device Dissipation @ T _C = 25°C Derate above 25°C	PD	0.85 6.8		Watts mW/°C
Operating and Storage Junction Temperature Range	Tj, Tstg	–55 to +150		°C

TELEPHONE: (973) 376-2922 (212) 227-6005 FAX: (973) 376-8960

COLLECTOR

EMITTER

2 BASE

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Ambient	R _{0JA} (1)	357	°C/W
Thermal Resistance, Junction to Case	R _{θJC}	147	°C/W

0000

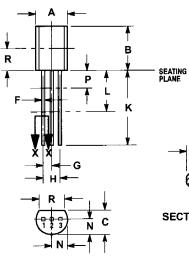
COTDICAL CUADACTEDICTICS (*

Characteristic		Symbol	Min	Max	Unit
OFF CHARACTERISTICS		••		L	
Collector-Emitter Breakdown Voltage ⁽²⁾ (I _C = 3.0 mAdc, I _B = 0)	MPS918 MPS3563	V(BR)CEO	15 12		Vdc
Collector-Base Breakdown Voltage ($I_C = 1.0 \ \mu Adc, I_E = 0$) ($I_C = 100 \ \mu Adc, I_E = 0$)	MPS918 MPS3563	V(BR)CBO	30 30	-	Vdc
Emitter–Base Breakdown Voltage (I _E = 10 μAdc, I _C = 0)	MPS918 MPS3563	V(BR)EBO	3.0 2.0		Vdc
Collector Cutoff Current (V _{CB} = 15 Vdc, I _E = 0)	MPS918 MPS3563	Ісво		10 50	nAdc

1. R_{0JA} is measured with the device soldered into a typical printed circuit board.

2. Pulse Test: Pulse Width \leq 300 µs; Duty Cycle \leq 1.0%.

NJ Semi-Conductors reserves the right to change test conditions, parameter limits and package dimensions without notice. Information furnished by NJ Semi-Conductors is believed to be both accurate and reliable at the time of going to press. However, NJ Semi-Conductors assumes no responsibility for any errors or omissions discovered in its use. NJ Semi-Conductors encourages customers to verify that datasheets are current before placing orders.


Quality Semi-Conductors

MPS918 MPS3563

ELECTRICAL CHARACTERISTICS ($T_A = 25^{\circ}$ C unless otherwise noted) (Continued)

Characteristic		Symbol	Min	Max	Unit
ON CHARACTERISTICS					
DC Current Gain(2) (I _C = 3.0 mAdc, V _{CE} = 1.0 Vdc) (I _C = 8.0 mAdc, V _{CE} = 10 Vdc)	MPS918 MPS3563	hFE	20 20	200	
Collector-Emitter Saturation Voltage (I _C = 10 mAdc, I _B = 1.0 mAdc)	MPS918	VCE(sat)		0.4	Vdc
Base–Emitter Saturation Voltage (I _C = 10 mAdc, I _B = 1.0 mAdc)	MPS918	VBE(sat)	_	1.0	Vdc
SMALL-SIGNAL CHARACTERISTICS		_			
Current–Gain — Bandwidth Product(2) (I _C = 4.0 mAdc, V _{CE} = 10 Vdc, f = 100 MHz) (I _C = 8.0 mAdc, V _{CE} = 10 Vdc, f = 100 MHz)	MPS918 MPS3563	fŢ	600 600	 1500	MHz
Output Capacitance $(V_{CB} = 0 \text{ Vdc}, I_E = 0, f = 1.0 \text{ MHz})$ $(V_{CB} = 10 \text{ Vdc}, I_E = 0, f = 1.0 \text{ MHz})$ $(V_{CB} = 10 \text{ Vdc}, I_E = 0, f = 1.0 \text{ MHz})$	MPS918 MPS918 MPS3563	C _{obo}		3.0 1.7 1.7	pF
Input Capacitance (V _{EB} = 0.5 Vdc, I _C = 0, f = 1.0 MHz)	MPS918	C _{ibo}	—	2.0	pF
Small–Signal Current Gain (I _C = 8.0 mAdc, V _{CE} = 10 Vdc, f = 1.0 kHz)	MPS3563	h _{fe}	20	250	-
Noise Figure (I _C = 1.0 mAdc, V _{CE} = 6.0 Vdc, R _S = 400 k Ω , f = 60 MHz)	MPS918	NF	—	6.0	dB
FUNCTIONAL TEST					
$\begin{array}{l} \mbox{Common-Emitter Amplifier Power Gain} \\ (I_C = 6.0 \mbox{ mAdc}, V_{CB} = 12 \mbox{ Vdc}, f = 200 \mbox{ MHz}) \\ (I_C = 8.0 \mbox{ mAdc}, V_{CE} = 10 \mbox{ Vdc}, f = 200 \mbox{ MHz}) \\ (G_{fd} + G_{re} < -20 \mbox{ dB}) \end{array}$	MPS918 MPS3563	G _{pe}	15 14	_	dB
Power Output (I _C = 8.0 mAdc, V _{CB} = 15 Vdc, f = 500 MHz)	MPS918	Pout	30	-	mW
Oscillator Collector Efficiency (I _C = 8.0 mAdc, V _{CB} = 15 Vdc, P _{out} = 30 mW, f = 500 MHz)	MPS918	η	25		%

2. Pulse Test: Pulse Width \leq 300 µs; Duty Cycle \leq 1.0%.

SECTION X-X

•••••

TYLE 1: PIN 1. EMITTER 2. BASE 3. COLLECTOR

NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH. 3. CONTOUR OF PACKAGE BEYOND DIMENSION R IS UNCONTROLLED. 4. DIMENSION F APPLIES BETWEEN P AND L DIMENSIONS D AND J APPLY BETWEEN L AND K MIMIMUM. LEAD DIMENSION IS UNCONTROLLED IN P AND BEYOND DIMENSION K MINIMUM.

	INCHES		MILLIN	ETERS
DIM	MIN	MAX	MIN	MAX
Α	0.175	0.205	4.44	5.21
В	0.290	0.310	7,37	7.87
Ċ	0.125	0.165	3.18	4.19
D	0.018	0.021	0.457	0.533
F	0.016	0.019	0.407	0.482
G	0.045	0.055	1.15	1.39
H	0.095	0.105	2.42	2.66
J	0.018	0.024	0.46	0.61
ĸ	0.500		12.70	
r	0.250		6.35	
N	0.080	0.105	2.04	2.66
P		0.100		2.54
R	0.135		3.43	