New Jersey Semi-Conductor Products, Inc.

20 STERN AVE. SPRINGFIELD, NEW JERSEY 07081 U.S.A. TELEPHONE: (973) 376-2922 (212) 227-6005 FAX: (973) 376-8960

The RF Line NPN Silicon Push-Pull RF Power Transistor

... designed primarily for wideband large-signal output and driver amplifier stages in the 30 to 500 MHz frequency range.

- Specified 28 Volt, 500 MHz Characteristics Output Power = 100 W Typical Gain = 9.5 dB (Class AB); 8.5 dB (Class C) Efficiency = 55% (Typ)
- Built–In Input Impedance Matching Networks for Broadband Operation
- Push–Pull Configuration Reduces Even Numbered Harmonics
- Gold Metallization System for High Reliability
- 100% Tested for Load Mismatch

The MRF393 is two transistors in a single package with separate base and collector leads and emitters common. This arrangement provides the designer with a space saving device capable of operation in a push-pull configuration.

PUSH-PULL TRANSISTORS

MAXIMUM RATINGS

Rating	Symbol	Value	Unit Vdc	
Collector-Emitter Voltage	VCEO	30		
Collector-Base Voltage	V _{CBO}	60	Vdc	
Emitter-Base Voltage	VEBO	4.0	Vdc	
Collector Current — Continuous		16	Adc	
Total Device Dissipation @ T _C = 25°C (1) Derate above 25°C	PD	270 1.54	Watts W/°C	
Storage Temperature Range	Tstg	-65 to +150	°C	
Junction Temperature	TJ	200	°C	

THERMAL CHARACTERISTICS

1. This device is designed for RF operation. The total device dissipation rating applies only when the device is operated as an RF push-pull amplifier.

Quality Semi-Conductors

BROADBAND PUSH-PULL

RF POWER TRANSISTOR

NPN SILICON

CASE 744A-01

ELECTRICAL CHARACTERISTICS ($T_C = 25^{\circ}C$ unless otherwise noted.)

Characteristic	Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS (1)					
Collector-Emitter Breakdown Voltage (I _C = 50 mAdc, I _B = 0)	V(BR)CEO	30	<u> </u>	_	Vdc
Collector-Emitter Breakdown Voltage (IC = 50 mAdc, VBE = 0)	V(BR)CES	60		·	Vdc
Emitter-Base Breakdown Voltage (IE = 5.0 mAdc, IC = 0)	V(BR)EBO	4.0			Vdc
Collector Cutoff Current (V _{CB} = 30 Vdc, I _E = 0)	СВО			5.0	mAdc
ON CHARACTERISTICS (1)					
DC Current Gain (I _C = 1.0 Adc, V _{CE} = 5.0 Vdc)	hFE	20	-	100	
DYNAMIC CHARACTERISTICS (1)					
Output Capacitance (V _{CB} = 28 Vdc, I _E = 0, f = 1.0 MHz)	Cob	40	75	95	pF
FUNCTIONAL TESTS (2) — See Figure 1					
Common–Emitter Amplifier Power Gain (V _{CC} = 28 Vdc, P _{out} = 100 W, f = 500 MHz)	G _{pe}	7.5	8.5		dB
Collector Efficiency (V _{CC} = 28 Vdc, P _{out} = 100 W, f = 500 MHz)	η	50	55	_	%
Load Mismatch (V _{CC} = 28 Vdc, P _{out} = 100 W, f = 500 MHz, VSWR = 30:1, all phase angles)	Ψ	No Degradation in Output Power			

NOTES:

1. Each transistor chip measured separately.

2. Both transistor chips operating in push-pull amplifier.

C1, C2, C7, C8 — 240 pF 100 mil Chip Cap C3 — 15 pF 100 mil Chip Cap C4 — 24 pF 100 mil Chip Cap C5 — 33 pF 100 mil Chip Cap C6 — 12 pF 100 mil Chip Cap C9, C13 — 1000 pF 100 mil Chip Cap C10, C14 — 680 pF Feedthru Cap C11, C15 — 0.1 μ F Ceramic Disc Cap C12, C16 — 50 μ F 50 V L1, L2 — 0.15 μ H Molded Choke with Ferrite Bead L3, L4 — 2–1/2 Turns #20 AWG 0.200" ID L5, L6 — 3–1/2 Turns #18 AWG 0.200" ID B1, B2 — Balun 50 Ω Semi Rigid Coax, 86 mil OD, 4" Long Z1, Z2 — 850 mil Long x 125 mil W. Microstrip Z3, Z4 — 200 mil Long x 125 mil W. Microstrip Z5, Z6 — 800 mil Long x 125 mil W. Microstrip Board Material — 0.0325" Teflon—Fiberglass, $\epsilon_{\rm f}$ = 2.56,

1 oz. Copper Clad both sides.

Figure 1. 500 MHz Test Fixture