New Jersey Semi-Conductor Products, Inc.

20 STERN AVE. SPRINGFIELD, NEW JERSEY 07081 U.S.A. TELEPHONE: (973) 376-2922 **PMD18D100**

MECHANICAL DATA Dimensions in mm

TO3 Package. Case is collector.

NPN DARLINGTON POWER TRANSISTOR

FEATURES

- TO3 PACKAGE
- 100V
- 100A PEAK
- 300 WATTS

DESCRIPTION

The PMD18D100 is an NPN Darlington Power Transistor in a hermetic TO3 package. The device is a monolothic epitaxial structure with built in base-emitter shunt resistor

ABSOLUTE MAXIMUM RATINGS (T_{case} = 25°C unless otherwise stated)

V _{CBO}	Collector – Base Voltage (Open Emitter)	100V
V _{CEO}	Collector – Emitter Voltage (Open Base)	100∨
V _{EBO}	Emitter – Base Voltage (Open Collector)	5V
I _C	Collector Current Continuous	50A
	Peak	100A
I _B	Base Current	1.5A
PD	Total Power Dissipation at T _{case} = 50°C	300W
T _{J,} T _{STG}	Operating Junction and Storage Temperature	-65 to 200°C
θ _{JC}	Thermal Resistance	0.4°C/W

NJ Semi-Conductors reserves the right to change test conditions, parameter limits and package dimensions without notice. Information furnished by NJ Semi-Conductors is believed to be both accurate and reliable at the time of going to press. However, NJ Semi-Conductors assumes no responsibility for any errors or omissions discovered in its use. NJ Semi-Conductors encourages customers to verify that datasheets are current before placing orders.

Quality Semi-Conductors

Units Max. Parameter **Test Conditions** Min. Typ. **ON CHARACTERISTICS** Collector - Emitter 2 V I_C = 30A $I_{B} = 120 mA$ V_{CE(sat)} Saturation Voltage* Base - Emitter Turn-on V_{CE} = 3V I_C = 30A 2.8 V V_{BE(on)} Voltage* I_C = 30A ٧ I_B = 120mA 2.8 Base - Emitter Saturation* V_{BE(sat)} $V_{CE} = 3V$ $I_{\rm C} = 30$ A 1000 20000 DC Current Gain* h_{FE} T_i = 25°C T_A = 25°C Forward Bias Secondary V_{CE} = 30V 10.0 А ls/b 1 sec non-repetitive pulse Breakdown Current OFF CHARACTERISTICS Collector Emitter Breakdown I_{CE} = 100mA T_i = 25°C 100 v V_(BR)CEO Voltage (Base Open)* Collector Emitter Sustaining ٧ $R_{BE} = 2.2K\Omega$ 100 V(SUS)CER Voltage* I_{CE} = 100mA Emitter Base Leakage V_{EB} = 5V 6.0 I_C = 0A mΑ I_{EBO} Current Collector Emitter Leakage V_{CE} = 67V 15.0 mΑ $R_{BE} = 2.2K\Omega$ I_{CER} Current DYNAMIC CHARACTERISTICS V_{CB} = 10V $I_{\rm F} = 0A$ 1200 pF C_{ob} **Output Capacitance** f = 1MHz T_i = 25°C $V_{CE} = 3V$ $I_{C} = 18A$ 300 Small Signal Current Gain h_{fe} f = 1 KHzT_i = 25°C **Common Emitter Short** I_C = 18A $V_{CE} = 3V$ 4 **Circuit Forward Transfer** h_{fe} f = 1MHzT_i = 25°C Ratio

ELECTRICAL CHARACTERISTICS (T_J = 0 to 200°C, unless otherwise stated)

* Pulse Tested with pulse width $\leq 300 \mu s,$ and duty cycle < 2%