New Jersey Semi-Conductor Products, Inc.

20 STERN AVE. SPRINGFIELD, NEW JERSEY 07081 U.S.A.

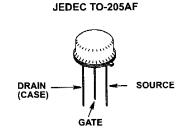
TELEPHONE: (973) 376-2922 (212) 227-6005 FAX: (973) 376-8960

1A, 120V and 150V, 1.9 Ohm, N-Channel Power MOSFETs

Features

- 1A, 120V and 150V
- r_{DS(ON)} = 1.9Ω
- SOA is Power Dissipation Limited
- Nanosecond Switching Speeds
- Linear Transfer Characteristics
- High Input Impedance
- Majority Carrier Device

Description


These are N-Channel enhancement mode silicon gate power field effect transistors designed for applications such as switching regulators, switching converters, motor drivers, relay drivers and drivers for high power bipolar switching transistors requiring high speed and low gate drive power. These types can be operated directly from integrated circuits.

Symbol

Ordering Information

PART NUMBER	PACKAGE	BRAND
RFL1N12	TO-205AF	RFL1N12
RFL1N15	TO-205AF	RFL1N15

Packaging

Quality Semi-Conductors

Absolute Maximum Ratings T_C = 25°C, Unless Otherwise Specified

	RFL1N12	RFL1N15	UNITS
Drain to Source Voltage (Note 1)	120	150	V
Drain to Gate Voltage (R_{GS} = 1M Ω) (Note 1)	120	150	V
Continuous Drain Current	1	1	А
Pulsed Drain Current	5	5	А
Gate to Source Voltage V _{GS}	±20	±20	V
Maximum Power DissipationP _D	8.33	8.33	W
Linear Derating Factor	0.0667	0.0667	W/ ^o C
Operating and Storage Temperature	-55 to 150	-55 to 150	°C
Maximum Temperature for Soldering			
Leads at 0.063in (1.6mm) from Case for 10s	300	300	°C
Package Body for 10s, See Techbrief 334	260	260	°C

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

NOTE:

1. $T_J = 25^{\circ}C$ to $125^{\circ}C$.

Electrical Specifications $T_{C} = 25^{\circ}C$, Unless Otherwise Specified

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	ТҮР	MAX	UNITS
Drain to Source Breakdown Voltage RFL1N12	BV _{DSS}	I _D = 250μΑ, V _{GS} = 0V	120	-	-	v
RFL1N15			150	-	-	V
Gate Threshold Voltage	V _{GS(TH)}	$V_{GS} = V_{DS}, I_D = 250 \mu A, (Figure 8)$	2	-	4	V
Zero Gate Voltage Drain Current	IDSS	V _{DS} = 0.8 x Rated BV _{DSS} , T _C = 25 ^o C	-	-	1	μA
		T _C = 125 ^o C	-	-	25	μA
Gate to Source Leakage Current	IGSS	$V_{GS} = \pm 20V, V_{DS} = 0V$	-	-	±100	nA
Drain to Source On Voltage (Note 2) -	V _{DS(ON)}	I _D =.1A, V _{GS} =10V	-	-	1.9	V
		I _D = 2A, V _{GS} = 10V	-	-	6.3	V
Drain to Source On Resistance (Note 2)	^r DS(ON)	I _D = 1A, V _{GS} = 10V, (Figures 6, 7)	-	-	1.9	Ω
Forward Transconductance (Note 2)	9fs	I _D = 1A, V _{DS} = 10V, (Figure 10)	400	-	-	S
Turn-On Delay Time	^t d(ON)	$I_D \approx 1A, V_{DD} = 75V, R_{GS} = 50\Omega$ $V_{GS} = 10V, (Figures 11, 12, 13)$	-	17	25	ns
Rise Time	t _r		-	30	45	ns
Turn-Off Delay Time	t _{d(OFF)}			30	45	ns
Fall Time	t _f		-	30	50	ns
Input Capacitance	C _{ISS}	V _{GS} = 0V, V _{DS} = 25V, f = 1MHz, (Figure 9)	-	-	200	pF
Output Capacitance	C _{OSS}			-	80	рF
Reverse Transfer Capacitance	C _{RSS}			-	25	pF
Thermal Resistance Junction to Case	R _{θJC}		-	-	15	°C/W

Source to Drain Diode Specifications

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNITS
Source to Drain Diode Voltage (Note 2)	V _{SD}	I _{SD} = 1A	-	-	1.4	V
Reverse Recovery Time	t _{rr}	I _{SD} = 1A, dI _{SD} /dt = 50A/μs	-	150	-	ns