New Jersey Semi-Conductor Products, Inc.

20 STERN AVE. SPRINGFIELD, NEW JERSEY 07081 U.S.A.

TELEPHONE: (973) 376-2922 (212) 227-6005 FAX: (973) 376-8960

T4700 Series

15-Ampere Silicon Triacs

For Phase-Control and Load-Switching Applications

Features:

- 800V, 125 Deg. C T_J Operating
- High dv/dt and di/dt Capability
- Low Switching Losses
 High Pulse Current Capability
 Low Forward and Reverse Leakage
- Sipos Oxide Glass Multilayer Passivation System
- Advanced Unisurface Construction
- Precise Ion Implanted Diffusion Source

TERMINAL DESIGNATIONS

JEDEC TO-213AA

MAXIMUM RATINGS, Absolute-Maximum Values:

REPETITIVE PEAK OFF-STATE VOLTAGE:							
Gate Open	VDROM	200	400	600	800		
RMS ON-STATE CURRENT:	Ditom				000		
T _c = 95°C, conduction angle = 360°	TIPHEN			15			
PEAK SURGE (NON-REPETITIVE) ON-STATE CURRENT:	TEM						
For one full cycle of applied principal voltage	- 1.344						
60 Hz (sinusoidal)		100					
For one full cycle of applied principal voltage							
(50-Hz, sinusoidal)		85					
For more than one full cycle of applied voltage		See Eig 2					
PEAK GATE-TRIGGER CURRENT:			000	ng. 0			
For 1 µs max	lonu					,	
FUSING CURRENT (for triac protection):	GIM				_		
T _J = -40 to 100° C, t = 1.25 to 10 ms	21			50		٨2	
GATE POWER DISSIPATION:						~	
Peak ^e (for 1 μ s max. and I _{GTM} = \leq 4 A)	Pou	16					
Average (averaging time = 10 ms max.)	Parato	0.45					
TEMPERATURE RANGE:∆	O(AI)						
Storage	Tata		-40 1	0 150		00	
Operating (Case)	Tc	-40 to 125					
PIN TEMPERATURE (During soldering):	0						
At distances \geq 1/32 in. (0.8 mm) from							
seating plane for 10 s max.	TP		22	5		•	
	,						

For either polarity of main terminal 2 voltage (VMT2) with reference to main terminal 1. •For either polarity of gate voltage (Vg) with reference to main terminal 1. For temperature measurement reference point, see Dimensional Outline.

NJ Semi-Conductors reserves the right to change test conditions, parameter limits and package dimensions without notice. Information furnished by NJ Semi-Conductors is believed to be both accurate and reliable at the time of going to press. However, NJ Semi-Conductors assumes no responsibility for any errors or omissions discovered in its use. NJ Semi-Conductors encourages customers to verify that datasheets are current before placing orders.

T4700B

T4700D

T4700M

T4700M

Quality Semi-Conductors

T4700 Series

ELECTRICAL CHARACTERISTICS

At Maximum Ratings and at Indicated Case Temperature (T_c) Unless Otherwise Specified

	SYMBOL		UNITS		
CHARACTERISTIC		For All Types Unless Otherwise Specified			
		Min.	Тур.	Max.	
Peak Off-State Current [●] Gate open, T _J = 125°C, V _{DROM} = Max. rated value	I _{DROM}	_	0.2	4	mA
Instantaneous On-State Voltage For i _T = 30A (peak), T _c 25°C	VT	_	1.6	2.0	v
DC Holding Current Gate open, Initial principal current = 150 mA (DC), v _D = 12V: T _C = 25° C For other case temperatures	I _{HO}	-	15 See Fig. 5	60 [.]	mA
Critical Rate of Applied Commutating Voltage For v _D = V _{DROM} , I _{T(RMS)} = 15 A, commutating di/dt = 8 A/ms, and gate unenergized At T _c = +95° C	dv/dt	2	10	_	V/µs
Critical Řate of Rise of Off-State Voltage [®] For v _D = V _{DROM} , exponential voltage rise, and gate open At T _c = 125° C T4700B T4700D T4700M T4700N	dv/dt	30 20 15 10	150 100 75 50		V/µs
DC Gate-Trigger Current ⁶ For $v_D = 6$ volts (dc), $R_L = 12$ ohms, $T_C = +25^\circ$, and Specified Triggering Mode: I ⁺ Mode: V_{T_2} is positive, V_G is positive I ⁻ Mode: V_{T_2} is positive, V_G is negative III ⁺ Mode: V_{T_2} is negative, V_G is positive III- Mode: V_{T_2} is negative, V_G is negative For other case temperatures	l _{ar}	 	15 35 35 15 ee Figs. 7 8	30 80 80 30 & 9	mA
DC Gate-Trigger Voltage \blacksquare For v _o = 6 volts (dc) and R _t = 12 ohms At T _c = +25° For other case temperatures For v _o = V _{DROM} , R _t = 125 Ω, T _c = 125° C	V _{GT}		1 See Fig. 11	2.5	v
Gate-Controlled Turn-On Time (Delay Time + Rise Time) For $v_D = V_{DROM}$, $I_0 = 160$ mA, $t_r = 0.1 \ \mu$ s, $I_T = 25$ A (peak), $T_C = 25^{\circ}$ C	t _{gt}	_	1.6	2.5	μs
Thermal Resistance: Junction-to-Case	R _{øjc}	-	-	1.3	°C/W

٦

For either polarity of main terminal 2 voltage (V_{T2}) with reference to main terminal 1. For either polarity of gate voltage (V_G) with reference to main terminal 1.