
absolute maximum ratings at $25^{\circ} \mathrm{C}$ case temperature (unless otherwise noted)

	TIP55A	TIP56A	TIP67A	TIP58A
Coilector-base voltege	350 V	400 V	4500 V	600 V
Collector-amitter voitage (\|B $=0$)	250 V	300 V	350 V	400 V
Emitter-base voltage	8 V	BV	8V	8 V
Continuous collector current	7.5A			
Paak collector current (ses Note 1)	10A			
Continuous base curront	4A			
Safe operating area	Soe Figure 8			
Continuous device dissipation at (or below) $100^{\circ} \mathrm{C}$ case temperature (sae Note 2)	50W			
Continuous device dissipation at for below) $28^{\circ} \mathrm{C}$ free-eir temperature (see Note 3)	3 W			
Operating collector junction and storage temperature range	$-65^{\circ} \mathrm{C}$ to $160^{\circ} \mathrm{C}$			
Lead temperature $3.2 \mathrm{~mm}(0.125$ inch) from case for 10 seconds	$300^{\circ} \mathrm{C}$			

NOTES: 1. This value applies for $t_{w} \leqslant 10 \mathrm{~ms}$, duty cycle $\leqslant 10 \%$.
2. Derate linearly to $160^{\circ} \mathrm{C}$ case temperature at the rate of $1 \mathrm{~W} /{ }^{\circ} \mathrm{C}$ of refer to Dissipation Derating Curve, Figure 9.
3. Derate linearly to $180^{\circ} \mathrm{C}$ fres-air temperature at the tate of $24 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ or refer to Dissipation Derating Curve, Figure 10.

NJ Semi-Conductors reserves the right to change test conditions, parameter limits and package dimensions without notice. Information furnished by NJ Semi-Conductors is believed to be both accurate and reliable at the time of going to press. However, NJ Semi-Conductors assumes no responsibility for any errors or omissions discovered in its use. NJ Semi-Conductors encourages customers to verify that datasheets are current before placing orders.

TIP55A, TIP56A, TIP57A, TIP58A
N-P-N SILICON POWER TRANSISTORS

PARAMETER	TEST CONDITIONS	71P55A	TIP56A	TIP57A	TIP59A	UNIT
		MIN TYP MAX	MIN TYP MAX	MIN TYP MAX	MIN TYP MAX	
$V_{\text {(BRICEO }}$	$\begin{aligned} & \mathrm{IC}=20 \mathrm{~mA}, \quad \mathrm{~B}=0, \\ & \text { Se日 Note } 4 \end{aligned}$	250	300	350	400	V
Icer	$V_{C E}=350 \mathrm{~V}, \quad \mathrm{R}_{\mathrm{BE}}$ \# 27 ¢	100				$\mu \mathrm{A}$
	$\mathrm{V}_{\mathrm{CE}}=400 \mathrm{~V}, \mathrm{R}_{\mathrm{BE}}=27 \mathrm{~S}$		100			
	$V_{C E}=450 \mathrm{~V}, \mathrm{R}_{\text {BE }}=27 \mathrm{Q}$			100		
	$\mathrm{V}_{\mathrm{CE}}=600 \mathrm{~V}, \mathrm{R}_{\mathrm{BE}}=279$				100	
IEBD	$V_{E B}=8 \mathrm{~V}, \quad \mathrm{C}=\mathrm{V}^{\circ}=0$	100	100	100	100	μ A
hFE	$\begin{aligned} & \text { VCE }=2 V, \quad i C=1 A, \\ & \text { See Notes } 4 \text { and } 5 \end{aligned}$	$10 \quad 100$	10100	$10 \quad 100$	$10 \quad 100$	
	$\mathrm{V}_{\mathrm{CE}}=2 \mathrm{~V}, \quad \mathrm{I}=5 \mathrm{CA}$, See Notes 4 and 6	6	6	6	6	
$V_{B E(s a t)}$		1.5	1.5	1.6	1.5	V
VCE(sat)	$I_{B}=1 A, \quad I C=5 A$ See Notes 4 and 5	1.2	1.2	1.2	1.2	V'
	$I_{B}=4 A, \quad I_{C}=10 A$ See Notes 4 and 5	2.5	2.5	2.5	2.5	

NOTES: - 4. These parameters must be measured using pulse techniques, $t_{w}=300 \mu 5$, duty cycle $\leqslant 2 \%$.
6. These parameters are measured with voltage-sensing contacts separate from the current-carrying contacts and located within $3.2 \mathrm{~mm}(0.125$ inch) from the device body.
thermal characteristics

PARAMETER	MIN	TYP MAX	UNIT
$\mathrm{A}_{\text {PIIC }}$		1	${ }^{\circ} \mathrm{CM}$
$\mathrm{R}_{\theta J \mathrm{~A}}$		41.7	
Rechs (sea Note 6)	0.6		
$\mathrm{C}_{\theta} \mathrm{C}$	1.4		J/b

NOTE 6: This parameter must be measured using a 10.003 inchl mice insulator with Dow-Corning 11 compound on bath sides of the insulator, 6-32 mounting screws with bushing, and a mounting torque of 8 ineh-pounds.
resistive-load switching characteristics at $25^{\circ} \mathrm{C}$ case temperature

1 Voltage and current values shown are nominal; exact values vary slightly with transistor parameters.
functional tests at $25^{\circ} \mathrm{C}$ free-alr temperature

TEST	TEST CONDITIONS	Level
Power (VCE * ICl	$\mathrm{V}_{\text {CE }}=50 \mathrm{~V}, \quad \mathrm{C}=2 \mathrm{~A}, \quad \mathrm{t}_{\text {test }}=0.16 \mathrm{~s}$	100W
Reverse Pulse Ensrgy $\left(\frac{1 c^{2} \mathrm{~L}}{2}\right)$	$\begin{array}{lll} \text { ICM }=6 \mathrm{~A}, & \mathrm{~L}=2 \mathrm{mH}, & t=10 \mathrm{~Hz}, \\ \mathrm{t}_{\text {test }}=0.5 \mathrm{~B}, & \text { See Figure } 2 \end{array}$	25 m
Forward Pulse Energy ($\left.\frac{\mathrm{C}^{2} \mathrm{~L}}{2}\right)$	$\mathrm{ICM}=10 \mathrm{~A}, \quad \mathrm{~L}=\mathrm{E} \mathbf{m H}, \quad V_{\text {clamp }}=\mathrm{V}_{\text {CEOMax }}$ rating. $f=60 \mathrm{~Hz}$, $\quad t_{\text {test }}=0.5 \mathrm{~s}$, See Figure 3	250 mJ
Operation as Commutating, Switch	$\begin{array}{lll} \text { l}_{\text {lad }}=5 \mathrm{~A}, & V_{C C}=0.8 \mathrm{~V}_{\text {CEO }} \text { max rating, } & f=20 \mathrm{kHz}, \\ \text { t test }=0.5 \mathrm{~s}, & \text { See Figure } 4 \end{array}$	

